
Work-In-Progress: Protecting Real-Time GPU
Applications on Integrated CPU-GPU SoC

Platforms

Waqar Ali, Heechul Yun

University of Kansas, USA.

{wali, heechul.yun}@ku.edu

Abstract—Integrated CPU-GPU architecture provides excel-
lent acceleration capabilities for data parallel applications on
embedded platforms while meeting the size, weight and power
(SWaP) requirements. However, sharing of main memory be-
tween CPU applications and GPU kernels can severely affect the
execution of GPU kernels and diminish the performance gain
provided by GPU. In the NVIDIA Tegra TK1 platform which
has the integrated CPU-GPU architecture, we noticed that in
the worst case scenario, the GPU kernels can suffer as much
as 4X slowdown in the presence of co-running memory intensive
CPU applications compared to their solo execution. In this paper,
we propose a kernel mechanism called BWLOCK++ which can
be used to protect the performance of GPU kernels from co-
running memory intensive CPU applications. Our preliminary
investigations show that by using BWLOCK++, the performance
slowdown of GPU kernels in the presence of memory contention
can be decreased by up-to 63%.

I. INTRODUCTION

Integrated CPU-GPU architecture based system-on-a-chip

(SoC) platforms, such as NVIDIA’s Tegra TK1 / TX1, are in-

creasingly demanded for performance intensive cyber-physical

systems (CPS) such as autonomous cars and unmanned aerial

vehicles (UAVs). These CPS require high computing perfor-

mance to process the vast amount of data flowing from a

variety of sensors in real-time (e.g. real-time obstacle detection

and avoidance) while satisfying a number of size, weight and

power (SWaP) constraints. This makes systems with integrated

CPU-GPU architectures an attractive option for CPS because

such systems can provide high performance while meeting

SWaP requirements [6].

Designing critical real-time applications on integrated CPU-

GPU architectures is, however, challenging because contention

in the shared hardware resources (e.g. memory bandwidth)

can significantly alter the application’s timing characteristics.

For example, in the NVIDIA Tegra TK1 platform, the CPU

cores and GPU use a single shared main memory subsystem.

Therefore, memory intensive batch jobs running on CPU cores

can cause significant delays to important real-time GPU tasks

(a) Run-alone

(b) Co-run

Fig. 1: Face-detection performance1comparison on a NVIDIA

Tegra TK1 (4 CPU + GPU): (a) Running alone on the system

(the algorithm uses 1 CPU and the GPU); (b) Co-running with

three memory-intensive tasks (each uses 1 idle CPU core)

running in parallel due to memory bandwidth contention.

To illustrate the significance of the problem, we evaluated

a vision based face detection algorithm [8] on NVIDIA Tegra

TK1 platform (4 ARM CPU cores + 192 core GPU). This

1The performance was measured with the dataset created by taking a
screencast of the sample image for sixty seconds. The resolution of the
resulting video file was scaled to 472x606 pixels. The screencast was used
to ensure that both the solo and corun cases get the same data stream during
the entire duration of the experiment.

978-1-5090-5269-1/17 $31.00 © 2017 IEEE 139978-1-5090-5269-1/17 $31.00 © 2017 IEEE 141978-1-5090-5269-1/17 $31.00 © 2017 IEEE 141

algorithm is single threaded w.r.t. CPU but uses GPU to

accelerate performance. That is, it uses at most one CPU core

and the GPU, leaving three idle CPU cores in the system.

In Figure 1(a), we measured performance (frames/sec) of the

algorithm in isolation. In Figure 1(b), on the other hand, we

co-schedule three memory intensive tasks on the idle system

cores and measure the corun performance. As can be seen

in the latter figure, co-scheduling the memory intensive tasks

on the idle cores significantly decreases the performance of

this vision-based face detection algorithm—resulting in an

approximately 4X slowdown. The main cause of the problem

is that, in the Tegra TK1 platform, both CPU and GPU share

the main memory and its limited memory bandwidth becomes

a bottleneck. As a result, even though the platform offers

plenty of raw performance, if left uncontrolled, the system

may fail to meet desired real-time performance.

In this paper, we present our software (OS) based approach

to mitigate the memory bandwidth contention problem in in-

tegrated CPU-GPU architectures. We also present preliminary

evaluation results using the NVIDIA Tegra TK1 platform.

II. BACKGROUND AND RELATED WORK

We first provide a brief high-level description of how GPU

works. GPU is an accelerator that executes some specific

functions requested by a master CPU program. Requests to the

GPU can be made by using GPU programming frameworks

such as CUDA that offer standard APIs. A request to GPU is

typically composed of the following four predictable steps:

• Copy data from host memory to device (GPU) memory

• Launch the function—called kernel—to be executed on

the GPU

• Wait until the kernel finishes

• Copy the output from device memory to host memory

In the real-time system community, GPUs have been studied

actively in recent years because of their potential benefits

in demanding data-parallel real-time applications [5]. Several

real-time GPU resource management frameworks focus on

predictable scheduling of multiple GPU kernels on discrete

GPUs [3], [4], [10]. In [1] the authors identify that the

GPU kernels typically demand high memory bandwidth to

achieve high data parallelism. They further show that if the

memory bandwidth required by GPU kernels is limited or

reduced, it can result in significant deterioration in the overall

performance of the GPU application.

These prior works, however, focus on addressing the con-

tention between multiple concurrent GPU kernels within a

discrete GPU, while our paper focuses on the contention

between CPUs and GPU in integrated CPU-GPU architecture.

Unlike discrete GPU based platforms in which the GPU

typically has its own dedicated high bandwidth (GDDR)

memory, integrated CPU-GPU platforms usually have shared

main memory between CPU applications and GPU kernels

and the performance impact of sharing this memory can be

significant as demonstrated in the previous section.

Fig. 2: BWLOCK++ on Tegra TK1

III. BWLOCK++ FOR INTEGRATED CPU-GPU

ARCHITECTURES

In this work, we propose BWLOCK++ to protect GPU

applications on integrated CPU-GPU architecture based SoC

platforms. We exploit the fact that each GPU kernel is executed

via explicit programming interfaces from a corresponding host

CPU program. In other words, we can precisely determine

when the GPU kernel starts and finishes by instrumenting

these functions. To avoid memory bandwidth contention from

the CPU, we notify the OS (Linux) before a GPU application

launches the GPU kernel and after the kernel completes. While

the GPU kernel is being executed, the OS regulates memory

bandwidth consumption of the CPU cores to minimize band-

width contention. Concretely, each core is periodically given

a small amount of memory bandwidth budget. If the core uses

up its given budget for the specified period, the (non-RT) CPU

tasks running on that core are throttled. In this way, the GPU

kernel suffer minimal memory bandwidth interference from

the CPU cores.

Figure 2 shows the overall architecture of the BWLOCK++

framework on the Tegra TK1 platform. BWLOCK++ builds

on our previous work BWLOCK [9], which target homoge-

neous multicore processors. In BWLOCK, the main goal is

to protect soft real-time (SRT) CPU tasks from concurrent

non-real-time tasks by throttling memory bandwidths of the

non-real-time tasks. This is achieved by manually calling a

lock-like API within the SRT task that wishes to protect its

memory performance critical code region. In contrast, the

goal of BWLOCK++ is to protect real-time GPU kernels

from concurrent CPU tasks, on integrated CPU-GPU based

SOC platforms, ideally without requiring manual programmer

efforts.

IV. PROTOTYPE IMPLEMENTATION

In order to test the feasibility of BWLOCK++, we first

ported our prior work [9]—which was originally developed

for Intel Haswell-based platform—on a NVIDIA Tegra TK1

140142142

Benchmark
Performance (FPS)

Solo Co-Run BWLOCK++ Improvement (%)
Face 10.77 5.01 8.16 63
Hog 3.76 3.09 3.74 21
Flow 8.51 5.87 6.38 9

TABLE II: GPU Benchmark Performance under Bandwidth

Contention

Event ID Description
L2D CACHE REFILL LD Level-2 Data Cache Refill - Read
L2D CACHE REFILL ST Level-2 Data Cache Refill - Write

TABLE I: L2 Performance Counters on ARM Cortex-A15

platform. The main challenge we faced in this porting effort

is the identification of the correct hardware performance

counters to measure memory traffic generated by applications

running on CPU cores. In the original x86 implementation,

we use the PERF COUNT HW CACHE MISSES event in

Linux, which is mapped to the LLC miss counter on Intel

processors. On ARM processors, however, we found that the

said event is not mapped to the last level cache miss counter.

Instead, it is mapped to the L1-data cache miss counter

(L1 DCACHE REFILL), which cannot be used to measure the

off-chip memory bandwidth traffic. From the Cortex-A15 [2]

reference manual, we found two L2 (LLC on Cortex-A15)

cache related performance counters—one for read and one for

write refills, shown in Table I. Our current proof-of-concept

implementation uses only the read counter in measuring off-

chip memory traffic. In the future, we plan to investigate ways

to use both read and write-refill counters to account for write-

refill memory traffic as well. Note that write-intensive memory

traffic can cause more severe interference than read traffic [7].

V. PRELIMINARY EVALUATION RESULTS

To evaluate the feasibility of GPU kernel protection, we use

three GPU-enabled OpenCV applications, which are included

as samples in the OpenCV distribution, as workloads. Face is a

face detection algorithm, which uses Haar Cascade classifiers;

Hog is the Histogram of Oriented Gradients method based

object detector; Flow is an Optical Flow algorithm implemen-

tation. All algorithms take the same video file as input. This

video was created by recording real-time video feed from a

camera. Note that this video file was different from the one

used in Section I.

Because our current prototype does not implement auto-

matic instrumentation, we manually added bandwidth lock

system calls around GPU kernel launch/wait code in the

test OpenCV applications. The basic experiment setup is as

follows. We first measure the performance of each subject

OpenCV benchmark in isolation (Solo). We then repeat the

experiment with three synthetic memory read traffic generator

programs—that is one core runs the subject benchmark and the

rest of the cores run the memory traffic generators. Finally, we

repeat the whole experiment with BWLOCK++ in the presence

of the same corunners using our prototype implementation.

Table II shows the results.

In case of Face, it can be seen that BWLOCK++ provides

significant performance improvement over the unregulated

corun case. For the other two benchmarks, the performance

gain is not as significant but it is still observable (21% for

Hog and 9% for Flow).

VI. ON-GOING/FUTURE WORK

We have presented our preliminary investigation on the

feasibility and effectiveness of the proposed BWLOCK++

approach. Our goal is to protect real-time performance of

GPU tasks on integrated CPU-GPU architecture based SoC

platforms. Our preliminary results are encouraging as we

observe noticeable performance improvements (up to 63%) in

the tested GPU enabled OpenCV applications in the presence

of contending memory bandwidth intensive CPU applications.

Our future work include the followings: (1) We plan to im-

plement runtime instrumentation to transparently insert band-

width lock without manual code modifications; (2) We plan

to develop CPU and GPU task co-scheduling algorithms to

minimize memory bandwidth contention, which would reduce

the amount of time to throttle the CPU cores; (3) We plan

to evaluate BWLOCK++ on different integrated CPU-GPU

platforms, including the Tegra TX1 platform.

REFERENCES

[1] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler. Page Placement Strategies for GPUs within Heterogeneous
Memory Systems. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 607–618. ACM, 2015.

[2] ARM. Cortex-A15 Technical Reference Manual, Rev: r2p0, 2011.
[3] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Timegraph:

Gpu scheduling for real-time multi-tasking environments. In USENIX
Annual Technical Conference (ATC). USENIX, 2011.

[4] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
gpu resource management in the operating system. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 37–37, Berkeley, CA, USA, 2012. USENIX Association.

[5] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada. An open approach to autonomous vehicles. IEEE Micro,
35(6):60–68, Nov 2015.

[6] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang. An evaluation of the nvidia tx1 for supporting
real-time computer-vision workloads. In Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2017.

[7] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 1–12, April 2016.

[8] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition (CVPR),
volume 1, pages I–511. IEEE, 2001.

[9] H. Yun, W. Ali, S. Gondi, and S. Biswas. BWLOCK: A Dynamic
Memory Access Control Framework for Soft Real-Time Applications on
Multicore Platforms. IEEE Transactions on Computers (TC), PP(99):1–
1, 2016.

[10] H. Zhou, G. Tong, and C. Liu. Gpes: a preemptive execution system for
gpgpu computing. In 21st IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 87–97, April 2015.

141143143

