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Abstract—Integrated CPU-GPU architecture provides excel-
lent acceleration capabilities for data parallel applications on
embedded platforms while meeting the size, weight and power
(SWaP) requirements. However, sharing of main memory be-
tween CPU applications and GPU kernels can severely affect
the execution of GPU kernels and diminish the performance
gain provided by GPU. For example, in the NVIDIA Tegra
K1 platform which has the integrated CPU-GPU architecture,
we noticed that in the worst case scenario, the GPU kernels
can suffer as much as 4X slowdown in the presence of co-
running memory intensive CPU applications compared to their
solo execution. In this paper, we propose a software mechanism,
which we call BWLOCK++, to protect the performance of GPU
kernels from co-scheduled memory intensive CPU applications.

I. INTRODUCTION

Graphic Processing Units (GPUs) are increasingly impor-
tant computing resources to accelerate a growing number of
data parallel applications, especially in the field of artificial
intelligence that utilizes various forms of deep neural net-
works (DNNs). In recent years, DNNs are actively used in
developing intelligent robots, such as UAVs and autonomous
cars, and the GPUs have been key to efficiently handle the
AI workloads. These intelligent robots are, however, resource
constrained real-time embedded systems that not only require
high computing performance but also must satisfy a variety of
constraints such as cost, size, weight, and power consumption.
This makes integrated CPU-GPU architecture based comput-
ing platforms, whichs integrate CPU and GPU in a single chip
(e.g., NVIDIA’s Jetson [1] series), an appealing solution for
such robotics applicatiosn because of their high performance
and efficiency [14].

Designing critical real-time applications on integrated CPU-
GPU architectures is, however, challenging because of the
contention in the shared hardware resources (e.g., memory
bandwidth) which can significantly alter the application’s
timing characteristics. On integrated CPU-GPU architectures,
such as NVIDIA Tegra K1, the CPU cores and the GPU
typically share a single main memory subsystem. This enables
the memory intensive batch jobs running on CPU cores to
significantly interfere with the execution of real-time GPU
tasks (e.g., vision based collision detection and avoidance)
running in parallel; due to memory bandwidth contention.

To illustrate the significance of the problem stated above,
we evaluate a vision based face detection benchmark [20]
on a NVIDIA Tegra K1 platform (4 ARM CPU cores +
192 core GPU). The benchmark is single threaded w.r.t. the
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Fig. 1: Face-detection performance on NVIDIA Tegra K1 with
CPU corunners

CPU but it uses the GPU to accelerate performance. That is,
it uses at most one CPU core and the GPU, leaving three
idle CPU cores in the system. Figure 1 shows the result of
an experiment using the face detection benchmark. In Solo,
we measure performance (frames/sec) of the benchmark in
isolation. In Corun-1, Corun-2 and Corun-3, on the other hand,
we repeat the experiment after co-scheduling one, two and
three memory intensive tasks respectively on the idle cores to
observe the impact of the CPU co-runners on the execution of
GPU benchmark. As can be seen in the figure, co-scheduling
the memory intensive tasks on the idle cores significantly
decreases the performance of this vision-based face detection
benchmark—resulting in an approximately 3.3X slowdown;
despite the fact that the benchmark has exclusive access to a
CPU core and the GPU. The main cause of the problem is
that, in the Tegra K1 platform, both CPU and GPU share the
main memory and its limited memory bandwidth becomes a
bottleneck. As a result, even though the platform offers plenty
of raw performance, no real-time execution guarantees can be
provided if the system is left unmanaged.

In this paper, we present a software based approach, which



we call BWLOCK++, to mitigate the memory bandwidth con-
tention problem in integrated CPU-GPU architectures. More
specifically, we focus on protecting real-time GPU tasks from
the interference of non-critical but memory intensive CPU
tasks. BWLOCK++ dynamically instruments GPU tasks at
run-time and insert a memory bandwidth lock while critical
GPU kernels are being executed on the GPU. When the
bandwidth lock is being held by the GPU, the OS throttles
the maximum memory bandwidth usage of the CPU cores to a
certain threshold value to protect the GPU kernels. The thresh-
old value is determined on a per GPU task basis and may vary
depending on the GPU task’s sensitivity to memory bandwidth
contention. Throttling CPU cores inevitably negatively affect
the CPU throughput. To minimize the throughput impact,
we propose a throttling-aware CPU scheduling algorithm,
which we call Throttle Fair Scheduler (TFS). TFS favors CPU
intensive tasks over memory intensive ones while the GPU is
busy executing critical GPU tasks in order to minimize CPU
throttling. Our evaluation shows that BWLOCK++ can provide
good performance isolation for bandwidth intensive GPU tasks
in the presence of memory intensive CPU tasks. Furthermore,
the TFS scheduling algorithm reduces the CPU throughput
loss by up to 60%.

We make the following contributions in this paper:
• We present a software mechanism to ensure real-time

performance of critical GPU kernels in the presence of
memory intensive CPU applications on integrated CPU-
GPU architecture platforms.

• We introduce an automatic GPU kernel instrumentation
mechanism that eliminates the need of manual program-
mer intervention to protect GPU kernels.

• We identify a negative feedback effect of memory band-
width throttling when used with Linux’s CFS [13] sched-
uler. We present a throttling-aware CPU scheduling algo-
rithm that solves the problem.

• We present detailed evaluation results of our framework
on a NVIDIA Tegra K1 platform.

The remainder of this paper is organized as follows. We
present necessary background and discuss related work in
Section II. Section III provides details of the implementation
of our software framework BWLOCK++ and the challenges
involved in its design. In Section IV, we describe our eval-
uation platform and present evaluation results using a set of
GPU benchmarks. We discuss the limitations of our approach
in Section V and conclude in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we provide necessary background and dis-
cuss related work.

GPU is an accelerator that executes some specific functions
requested by a master CPU program. Requests to the GPU
can be made by using GPU programming frameworks such as
CUDA that offer standard APIs. A request to GPU is typically
composed of the following four predictable steps:

• Copy data from host memory to device (GPU) memory

• Launch the function—called kernel—to be executed on
the GPU

• Wait until the kernel finishes
• Copy the output from device memory to host memory
In the real-time systems community, GPUs have been stud-

ied actively in recent years because of their potential benefits
in demanding data-parallel real-time applications [11]. As
observed in [3], GPU kernels typically demand high memory
bandwidth to achieve high data parallelism and if the memory
bandwidth required by GPU kernels is not satisfied; it can
result in significant performance reduction.

For discrete GPUs, which have dedicated graphic memories,
researchers have focused on addressing interference among
the co-scheduled GPU tasks. Many real-time GPU resource
management frameworks adopt scheduling based approaches,
similar to real-time CPU scheduling, that provide priority or
server based scheduling of GPU tasks [9], [10], [23]. Elliot
et al., formulate the GPU resource management problem as
a synchronization problem and propose the GPUSync frame-
work that uses real-time locking protocols to deterministically
handle GPU access requests [6]. Here, at any given time,
one GPU kernel is allowed to utilize the GPU to eliminate
the unpredictability caused by co-scheduled GPU kernels. In
[12], instead of using a real-time locking protocol that suffers
from busy-waiting at the CPU side, the authors propose a
GPU server mechanism which centralizes access to the GPU
and allows CPU suspension (thus eliminating the CPU busy-
waiting). All the aforementioned frameworks primarily work
for discrete GPUs, which have dedicated graphic memory, but
they do not guarantee predictable GPU timing on integrated
CPU-GPU architecture based platforms because they do not
consider the problem of the shared memory bandwidth con-
tention between the CPU and the GPU.

Integrated GPU based platforms have recently gained much
attention in the real-time systems community. In [14], [15],
the authors investigate the suitability of NVIDIA’s Tegra X1
platform for use in safety critical real-time systems. With
careful reverse engineering, they have identified undisclosed
scheduling policies that determine how concurrent GPU ker-
nels are scheduled on the platform. In SiGAMMA [5], the
authors present a novel mechanism to preempt the GPU kernel
approach using a high-priority spinning GPU kernel to protect
critical real-time CPU applications. Their work is orthogonal
to ours as it solves the problem of protecting CPU tasks from
GPU tasks while our work solves the problem of protecting
GPU tasks from CPU tasks.

More recently, GPUGuard [7] provides a mechanism for
deterministically arbitrating memory access requests between
CPU cores and GPU in heterogeneous platforms containing in-
tegrated GPUs. They extend the PREM execution model [16],
in which a (CPU) task is assumed to have distinct computation
and memory phases, to model GPU tasks. GPUGuard provides
deterministic memory access by ensuring that only a single
PREM memory phase is in execution at any given time.
Although GPUGuard can provide strong isolation guarantees,
the drawback is that it may require significant restructuring
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Fig. 2: BWLOCK++ System Architecture

of application source code to be compatible with the PREM
model.

In this paper, we favor a less instrusive approach that
requires minimal or no programmer invention. Our approach
is rooted on a kernel-level memory bandwidth throttling
mechanism called MemGaurd [22], which utilizes hardware
performance counters of the CPU cores to limit memory
bandwidth consumption of the individual cores for a fixed
time interval on homogeneous multicore architectures. Mem-
Guard enables a system designer—not individual applica-
tion programmers—to partition memory bandwidth among
the CPU cores. However, MemGuard suffers from system-
level throughput reduction due to its coarse-grain bandwidth
control (per-core-level control). In contrast, BWLOCK [21] is
also based on a memory bandwidth throttling mechanism on
homogeneous multicore architectures but it requires a certain
degree of programmer intervention for fine-grain bandwidth
control by exposing a simple lock-like API to applications. The
API can effectively enable/disable memory bandwidth control
in a fine-grain manner within the application source code.

Our work is also based on memory bandwidth throttling
but it focuses on integrated CPU-GPU architectures and does
not require any programmer intervention while minimizing
throughput reduction of coarse-grain bandwidth throttling, as
will be described in the following section.

III. BWLOCK++

In this section, we provide an overview of BWLOCK++,
and discuss its design and implementation details.

A. Overview

BWLOCK++ is a software framework to protect GPU
applications on integrated CPU-GPU architecture based SoC
platforms. We focus on the problem of the shared memory
bandwidth contention between GPU kernels and CPU tasks
in integrated CPU-GPU architectures. More specifically, we
focus on protecting real-time GPU tasks from the interference
of non-critical but memory intensive CPU tasks.

As discussed in Section II, memory bandwidth is an impor-
tant shared resource in an integrated CPU-GPU architecture.
As more and more tasks, including real-time ones, are acceler-
ated using integrated GPUs, a solution is needed to guarantee
their performance without sacrificing too much efficiency and
system utilization.

In BWLOCK++, we exploit the fact that each GPU ker-
nel is executed via explicit programming interfaces from a
corresponding host CPU program. In other words, we can
precisely determine when the GPU kernel starts and finishes
by instrumenting these functions.

To avoid memory bandwidth contention from the CPU, we
notify the OS before a GPU application launches a GPU
kernel, and after the kernel completes. While the GPU kernel
is being executed, the GPU kernel holds a lock, which we
call a memory bandwidth lock. While the bandwidth lock is
being held, the OS regulates memory bandwidth consumption
of the CPU cores to minimize bandwidth contention with
the GPU kernel. Concretely, each core is periodically given
a certain amount of memory bandwidth budget. If the core
uses up its given budget for the specified period, the (non-
RT) CPU tasks running on that core are throttled. In this
way, the GPU kernel suffers minimal memory bandwidth inter-
ference from the CPU cores. However, throttling CPU cores
could significantly lower the overall system throughput. To
minimize the negative throughput impact, we propose a new
CPU scheduling algorithm, which we call the Throttling Fair
Scheduler (TFS), to minimize the duration of CPU throttling
without affecting memory bandwidth guarantees for real-time
GPU applications.

Figure 2 shows the overall architecture of the BWLOCK++
framework on an integrated CPU-GPU architecture (NVIDIA
Tegra K1 platform). BWLOCK++ is comprised of three major
components: (1) Dynamic run-time library for instrumenting
GPU applications; (2) the Throttle Fair Scheduler; (3) Per-
core B/W regulator. Working together, they protect real-time
GPU kernels and minimize CPU throughput reduction. We
will explain each component in the following sub-sections.

B. Automatic Instrumentation of GPU Applications

To eliminate manual programming efforts, we automatically
instrument the program binary at the dynamic linker level.

We exploit the fact that the execution of a GPU application
using a GPU runtime library such as NVIDIA CUDA typically
follows fairly predictable patterns. Figure 4 shows the execu-
tion timeline of a typical synchronous GPU application that
uses the CUDA API. The program code begins its execution
on the CPU. It first allocates a memory block on the GPU
and copies data from the host memory to the allocated GPU
memory. Then it launches a GPU kernel, which is then
executed on the GPU. In the meantime, the CPU is blocked
(or executes something else) until the GPU kernel completes.
Once the kernel completes, the CPU copies the resulting output
from the GPU memory to the host memory.

In order to protect the runtime performance of a GPU appli-
cation from co-running memory intensive CPU applications,
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Fig. 3: Effect of throttling on CPU scheduling

API Action Description
cudaLaunch Acquire BWLOCK++ Launch a GPU kernel
cudaDeviceSynchronize Release BWLOCK++ Ascertain whether all the previously requested tasks on a specific GPU device have

completed
cudaStreamSynchronize Release BWLOCK++ Wait for all the tasks launched in a specific GPU stream to complete
cudaEventSynchronize Release BWLOCK++ Wait until the completion of all work preceding the most recent call to cudaEventCreate

in the appropriate compute stream

TABLE I: CUDA APIs instrumented via LD_PRELOAD for BWLOCK++

CPU GPU

cudaMalloc(...)

cudaMemcpy(...)

cudaMemcpy(...)

kernel<<<...>>>(...)

cudaFree(...)

cudaLaunch	()

cudaSynchronize	()

Fig. 4: Phases of GPU Application under CUDA Runtime

we need to ensure that the GPU application automatically

holds the memory bandwidth lock while a GPU kernel is
executing on the GPU. Upon the completion of the execution
of the kernel, the GPU application again shall automatically
release the bandwidth lock. This is done by instrumenting a
small subset of CUDA API functions that are invoked when
launching a kernel on GPU for execution or waiting for the
kernel to complete its execution. These APIs are documented
in Table I. More specifically, we write wrappers for these
functions of interest which request/release bandwidth lock on
behalf of the GPU application before calling the actual CUDA
library functions. We compile these functions as a shared
library and use Linux’ LD_PRELOAD mechanism [8] to force
the GPU application to use those wrapper functions whenever
the CUDA functions are called. In this way, we automatically
throttle CPU cores’ bandwidth usage whenever real-time GPU
kernels are being executed so that the GPU kernels’ memory
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Fig. 5: System throttle time progression under different throttling schemes

bandwidth can be guaranteed.
A complication to the automatic GPU kernel instrumen-

tation arises when the application uses asynchronous CUDA
APIs to launch multiple GPU kernels in succession and then
waits for those kernels to complete. In such a case, acquiring
and releasing memory bandwidth lock on a per kernel basis is
not effective. We circumvent this problem by using a nested
locking scheme. The assumption under nested locking is that
the application must wait separately for the completion of each
individual GPU kernel that it launches. Upon launching the
first GPU kernel, we acquire the memory bandwidth lock using
our CUDA API wrappers as described above and increment
the global nesting count. Each subsequent GPU kernel launch
increments this count. When a GPU kernel completes its
execution, the BWLOCK++ nesting count is decreased and the
lock is released when the nesting count approaches zero. Using
this scheme, we have been able to automatically instrument
all the GPU benchmarks that we have used in evaluation of
BWLOCK++.

The obvious drawback of throttling CPU cores is that the
CPU throughput may be affected especially if some of the
tasks on the CPU cores are memory bandwidth intensive. In
the following sub-section, we discuss the impact of throttling
on CPU throughput and present a new CPU scheduling algo-
rithm that minimizes throughput reduction.

C. Throttle Fair CPU Scheduler

As described earlier in this section, BWLOCK++ uses a
throttling based approach to enforce memory bandwidth limit
of CPU cores at a regular interval. Although effective in
protecting critical GPU applications in the presence of memory
intensive CPU applications, this approach runs into the risk of
severely under-utilizing the system’s CPU capacity; especially
in cases when there are multiple best-effort CPU applications
with different memory characteristics running on the cores
without holding the bandwidth lock. In the throttling based
design, once a core exceeds its memory bandwidth quota and
gets throttled, that core cannot be used for the remainder of
the period. Let us denote the regulation period as T (i.e.,

T = 1ms) and the time instant at which an offending core
exceeds its bandwidth budget as τ . Then wasted time due to
throttling can be described as T − τ and the smaller the value
of τ (i.e., throttled earlier in the period) the larger the penalty
to the overall system throughput. The value of τ depends on
the rate at which a core consumes its allocated memory budget
and that in turn depends on the memory characteristics of the
application executing on that core. To maximize the overall
system throughput, the value of τ should be maximized—that
is if throttling never occurs, τ = T , or occurs late in the
period, throughput reduction will be less.

1) Effect of throttling on CFS: One way to reduce CPU
throttling is to schedule less memory bandwidth demanding
tasks on the CPU while the GPU is holding the bandwidth
lock. Assuming that each CPU core has a mix of memory
bandwidth intensive and CPU intensive tasks, then scheduling
the CPU intensive tasks while the GPU is holding the lock
would reduce CPU throttling or at least delay the instant
τ , which in turn improves CPU throughput. Unfortunately,
Linux’s default scheduler CFS [13] actually aggravates the
possibility of early and frequent throttling when used with
BWLOCK++’s throttling mechanism. The CFS algorithm tries
to allocate fair amount of CPU time among tasks by using each
task’s weighted virtual runtime as the scheduling metric. The
problem with throttling under CFS arises because the virtual
run-time of a memory intensive process, which gets frequently
throttled, increases more slowly than the virtual run-time of a
compute intensive process which does not get throttled. This
effect can be seen in Figure 3. Because of slower virtual run-
time progression, the memory intensive process gets preferred
by the CFS scheduler at each scheduling instance. This can be
seen more clearly in the bottom part of Figure 3. In this figure,
we plot the number of periods utilized by each task on a CPU
core, over a course of one thousand sampling periods. Under
CFS, out of all the sampling periods, 75% are utilized by the
memory intensive process and only 25% are utilized by the
compute intensive process. However, in each period that the
memory intensive process gets to run in, it incurs throttling
overhead which is captured by the throttle time metric as
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Fig. 6: Slowdown of the kernel execution time of GPU
benchmarks due to three Bandwidth corunners

shown in Figure 5. This becomes a negative feedback loop
which makes the system susceptible to severe capacity loss.

In order to circumvent this problem, we present a mod-
ification to the CFS algorithm in which the throttle time
penalty that a process incurs is taken into account in its
scheduling. This is done by simply adding the throttle time
value of the process to its virtual run-time at the end of each
BWLOCK++ sampling period. We call this modification to the
CFS algorithm the Throttle Fair Scheduling (TFS) algorithm.
Using this approach, we are able to significantly reduce CPU
capacity loss while protecting the performance of memory
critical applications. This design can be further extended to
preferentially schedule compute intensive processes on the
CPU while throttling is in place. Figure 3(f) shows the case
where the throttling penalty, that a memory intensive thread
incurs, is scaled 3X and then added to its virtual run-time. This
makes the virtual run-time of the memory intensive thread
increase sharply in the presence of throttling which makes
it less suitable for scheduling. The net result of this is less
throttling and improved overall system throughput.

D. Memory Bandwidth Regulator

In our framework, when the GPU kernels are busy running,
CPU cores are throttled using a kernel-level memory band-
width regulator module that utilizes hardware performance
counters to trigger interrupts when memory bandwidth budgets
of the cores are exhausted. The basic throttling mechanism
of BWLOCK++ is the same as [21]. However, one main
issue that we need to solve is to identify proper hardware
performance counters because of the differences in the hard-
ware architectures: Intel Haswell Xeon in [21] vs. ARM
Cortex-A15 in this work. On Intel platforms, each core’s
last-level cache miss counter is mapped to Linux kernel’s

PERF COUNT HW CACHE MISSES event, which is used
by the regulator kernel module. On ARM Cortex-A15, how-
ever, each core’s L1 cache miss counter is mapped to the same
event, which results in inaccurate bandwidth measurement.
We fix this issue by using L2 cache line refill counter,
L2D CACHE REFILL of ARM Cortex-A15, based on the
processor’s reference manual [4]. Because the L2 cache is
the last-level cache in Cortex-A15, this counter is able to
accurately measure the memory traffic generated from the CPU
cores. We have confirmed that the counter indeed correctly
counts memory traffic by conducting a set of experiments
using a synthetic benchmark from the IsolBench benchmark
suite [18].

IV. EVALUATION

In this section, we present the experimental evaluation
results of BWLOCK++.

A. Setup

We evaluate BWLOCK++ on NVIDIA Tegra K1 platform.
We use the Linux kernel version 3.10.40, which is patched
with the changes required to support BWLOCK++. The
CUDA runtime library version installed on the platform is 6.5,
which is the latest version available for Tegra K1. In all our
experiments, we place the platform in maximum performance
mode by maximizing GPU and memory clock frequencies and
disabling the dynamic frequency scaling of CPU cores. We
also shutdown the graphical user interface and disable the LLC
prefetcher to avoid run to run variation in the experiments.

In order to evaluate BWLOCK++, we use a selection of
representative GPU benchmarks from the parboil suite [17]
and OpenCV [2]. Table II show the brief descriptions of the
selected benchmarks.

B. Effect of Memory Bandwidth Contention

In this experiment, we investigate the effect of memory
bandwidth contention due to co-scheduled memory intensive
CPU applications on the evaluated GPU kernels.

First, we measure the execution time of each GPU bench-
mark in isolation. We then repeat the experiment after co-
scheduling three instances of a memory intensive CPU ap-
plication as corunners. We use the the Bandwidth benchmark
from the IsolBench suite [18] as the memory intensive CPU
benchmark, which updates a big 1-D array sequentially. The
sequential write access pattern of the benchmark is known to
cause worst-case interference on several multicore platforms
including the Tegra K1 [19]. The results of this experiment
are shown in Figure 6 and they demonstrate how much the
GPU benchmarks suffer from memory bandwidth contention
due to the co-scheduled CPU applications.

From this figure, it can be seen that the worst case slowd-
won, in case of histo benchmark, is more than 250%. Similary,
for face detection benchmark, the worst case slowdown is
more than 200%. For all other benchmarks, the slowdown
is non-zero and can be significant in affecting the real-
time performance. These results clearly show the danger
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Benchmark Suite Dataset Description
Face OpenCV Video file (640 x 480 @ 25 fps) Face detection using haar cascade classifiers
HOG OpenCV Video file (640 x 480 @ 25 fps) Object detection using histogram of oriented gradients
Flow OpenCV Video file (640 x 480 @ 25 fps) Detection of pattern of apparent motion of image objects
Histo Parboil Large Computation of 2-D saturating histogram
LBM Parboil Short Fluid dynamics simulation of an enclosed, lid-driven cavity, using the

Lattice-Boltzmann Method
Sgemm Parboil Large Register tiled matrix multiplication
Stencil Parboil Default An iterative Jacobi stencil operation on a regular 3-D grid
MRI-Gridding Parboil Default Computation of a regular grid of data representing an MR scan

TABLE II: Description of selected benchmarks

of uncontrolled memory bandwidth sharing in an integrated
CPU-GPU architecture as GPU kernels may potentially suffer
severe interference from co-scheduled CPU appliations. In the
following experiment, we investigate how this problem can be
addressed by using BWLOCK++.

C. Determining Memory Bandwidth Threshold

In order to apply BWLOCK++, we first need to determine
safe memory budget that can be given to the CPU cores in
the presence of GPU applications. However, an appropriate
threshold value may vary depending on the characteristics of
individual GPU applications. If the threshold value is set too
high, then it may not be able to protect the performance of
the GPU application. On the other hand, if the threshold value
is set too low, then the CPU applications will be throttled
more often that would result in significant CPU capacity loss.
Therefore, we experimentally determine these threshold values
on a per GPU application basis to find best trade-offs.

We calculate the safe memory budget for CPU cores by
observing the trend of GPU application slowdown as the
allowed memory usage threshold of CPU corunners is varied.
Figure 8 shows this trend for the histo benchmark from the
parboil suite. It can be seen that even a small change in
the allowed memory usage threshold produces a significant

Benchmark Corun Threshold (MBps) Slowdown @ Threshold
Histo 1 10%
Face 50 10%
LBM 50 8%
Stencil 100 9%
MRI-Gridding 100 5%
Flow 100 4%
Sgemm 200 7%
HOG 200 3%

TABLE III: Selected corun threshold values for GPU bench-
marks

change in the GPU benchmark execution; thus demonstrating
that the performance of this application is extremely sensitive
to the memory bandwidth. From this plot, we identify the
threshold value which causes 10% slowdown of the GPU
application and select that value as the allowed memory usage
threshold for the CPU corunners. The 10% slowdown mark is
arbitrarily selected and can be changed based on the appli-
cation requirement. In this manner, we calculate the allowed
memory usage thresholds for all the selected benchmarks. The
selected threshold values, along with the corresponding GPU
application slowdown, are mentioned in Table III.
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D. Effect of BWLOCK++

In this experiment, we evaluate the performance of
BWLOCK++. Specifically, we record the corun execu-
tion of GPU benchmarks under two different versions of
BWLOCK++. In BW-Locked-Auto, we use the automatic
kernel protection mechanism explained in Section III-B. In
BW-Locked-Coarse, we protect the entire execution of the
GPU application by acquiring memory bandwidth lock before
the application starts and releasing it once the application
completes. We compare the performance under BWLOCK++
against the Solo and Corun execution of the GPU benchmarks
which represent the measured execution times in isolation and
together with co-scheduled memory intensive CPU applica-
tions, respectively.

To get the datapoints for BW-Locked-Auto, we configure
BWLOCK++ according to the allowed memory usage thresh-
old of the benchmark at hand and use our dynamic GPU kernel
instrumentation mechanism to launch the benchmark in the
presence of three Bandwidth benchmark instances (write mem-
ory access pattern) as CPU corunners. The final datapoints
for BW-Locked-Coarse are obtained when the bandwidth lock
is applied for the entire duration of the application. We
use this final set as a baseline to determine how well our
automatic instrumentation framework is working. As can be
seen from the Figure 7, the execution under BWLOCK++ is
within the acceptable performance margin (i.e., 10%) for all
the GPU benchmarks. Also, the automatic instrumentation of
BWLOCK++ provides almost near ideal performance when
compared to coarse locking.

E. Throughput improvement with TFS

As explained in Section III-C, throttling under CFS results
in significant system throughput reduction. In order to illustrate

this, we conduct an experiment in which the GPU benchmarks
are executed with six CPU corunners. Each CPU core, apart
from the one executing the GPU benchmark, has a memory
intensive application and a compute intensive application
scheduled on it. For both of these applications, we use the
Bandwidth benchmark with different working set sizes. In
order to make Bandwidth memory intensive, we configure
its working set size to be twice the size of LLC on our
evaluation platform. Similarly for compute intensive case, we
configure the working set size of Bandwidth to be half of the
L1-data cache size. We record the total system throttle time
statistics with BWLOCK++ for all the GPU benchmarks. We
then repeat the experiment with our Throttle Fair Scheduling
scheme. In TFS-1, we configure the TFS punishment factor
as one for the memory intensive threads and in TFS-3, we
set this factor to three. We plot the normalized total system
throttle time for all the scheduling schemes and present them
in Figure 9. It can be seen that TFS results in significantly
less system throttling as compared to CFS.

V. DISCUSSION

Our apprach has following limitations. First, we assume that
CPU tasks are all best-effort and that no time critical real-
time tasks can run on any of the CPU cores while the GPU
is holding the bandwidth lock. Obviously, not all systems can
satisfy this assumption. We claim that our approach is useful
for situations where GPU accelerated tasks are critical, for
example, vision-based automatic braking system. Also, the
limitation can be mitigated, to a certain degree, by imple-
menting a form of TDMA schedule among the CPU and GPU
cores so that at any give time, either the CPU or the GPU
can hold the bandwidth lock. This requires a mechanism to
interrupt the execution of GPU kernels, which is possible in
NVIDIA’s recently release Pascal architecture based GPUs.
We plan to explore such a coordinated scheduling mechanism
as future work. Second, we assume that GPU applications are
given a priori and they can be profiled in advance so that we
can determine proper memory bandwidth threshold values. If
this assumption can not be satisfied, an alternative solution
is to use a single threshold value for all GPU applications,
which eliminates the need of profiling. But the downside is
that it may lower the CPU throughput because the memroy
bandwidth threshold must be conservatively set to cover all
types of GPU applications.

VI. CONCLUSION

In this paper, we presented BWLOCK++, a software based
mechanism for protecting the performance of GPU ker-
nels on platforms with integrated CPU-GPU architectures.
BWLOCK++ automatically instruments GPU applications at
run-time and insert a memory bandwidth lock, which throt-
tling memory bandwidth usage of the CPU cores to protect
performance of GPU kernels. We identified a side effect of
memory bandwidth throttling on the performance of Linux
default scheduler CFS, which results in the reduction of
overall system throughput. In order to solve the problem,
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Fig. 9: Comparison of total system throttle time under different scheduling schemes

we proposed a modification to CFS, which we call Throttle
Fair Scheduling (TFS) algorithm. Our evaluation results have
shown that BWLOCK++ effectively protects the performance
of GPU kernels from memory intensive CPU co-runners. Also,
the results showed that TFS improves system throughput,
compared to CFS, while protecting critical GPU kernels.
In the future, we plan to evaluate BWLOCK++ on other
integrated CPU-GPU architecture based platforms. We also
plan to extend BWLOCK++ not only to protect critical GPU
tasks but also to protect critical CPU tasks.
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