
Cache Bank-Aware Denial-of-Service Attacks on
Multicore ARM Processors

Michael Bechtel, Heechul Yun
University of Kansas, USA.

{mbechtel, heechul.yun}@ku.edu

Abstract—In this paper, we identify that bank contention
in the shared last-level cache (LLC) of multicore processors
can cause significant execution time slowdown to cross-core
victims even when the cache is partitioned. We propose a Cache
Bank-Aware Denial-of-Service (DoS) attack, which is specially
engineered to induce bank contention. This is accomplished by
leveraging publicly available cache bank mapping information
on commercial off-the-shelf (COTS) ARM multicore processors
to generate a large number of concurrent memory accesses to a
particular cache bank. Importantly, this attack can be mounted
from the user-space to delay cross-core victims without requiring
any special privilege or OS level support. We implement and
evaluate the proposed DoS attack on two ARM multicore plat-
forms using both synthetic and real-world workloads as victim
tasks. The results show that the proposed Cache Bank-Aware
DoS attack causes up to 9.7X slowdown in synthetic workloads
and 2.3X slowdown in real-world workloads even when state-
of-the-art isolation techniques, namely LLC partitioning and
DRAM bandwidth throttling, are used to protect the victim. In
other words, the proposed attack can effectively bypass existing
DoS attack mitigation techniques. We identify LLC bandwidth
throttling and LLC bank partitioning as potential mitigation
solutions and discuss their limitations.

I. INTRODUCTION

Multicore computing platforms are increasingly utilized in
safety-critical cyber physical systems as they can offer signifi-
cant performance improvements while simultaneously meeting
size, weight, and power (SWaP) constraints. However, in
multicore platforms, contention for shared hardware resources
is a major challenge as it can break the temporal isolation
needed for critical real-time tasks. Moreover, such contention
can be intentionally induced by malicious attackers with the
goal of jeopardizing system predictability and safety. Such
attacks are called Microarchitectural Denial-of-Service (DoS)
attacks [5], [8], [41] and they are especially problematic in
networked embedded systems, such as connected vehicles and
edge servers, where multiple applications or virtual machines
can be co-scheduled on a single multicore platform [16].

Microarchitectural DoS attacks target various shared hard-
ware resources in a platform’s memory hierarchy. Prior works
have shown that partitioning the cache space [28], [47] alone
is not sufficient to provide temporal isolation on a multicore
system. This is because the cache may still have other in-
ternal shared resources, such as miss-status-holding registers
(MSHRs) and write-back buffers, that can be exploited to
mount successful DoS attacks [8], [41]. DRAM bank con-
tention is another well-known source of interference, which led
to many proposals for partitioning them to improve isolation

[14], [24], [40]. Recently, it has been shown that DRAM
bank contention can exacerbate the cache blocking problem
by slowing down accesses to DRAM from the cache [5].

In this paper, we identify that bank contention in the shared
last-level cache (LLC) can also be exploited for DoS attacks.
Similar to DRAM, CPU caches, which are made of static
random access memory (SRAM), commonly employ banked
architectures to enable parallel accesses and improve through-
put. Much like DRAM bank contention, the SRAM banks in a
cache can also suffer from bank contention if multiple accesses
are made to the same bank simultaneously [34].

Based on this insight, we propose a Cache Bank-Aware
DoS attack, which is designed to induce bank contention on
the shared last-level cache (LLC) in a multicore processor.
Our attack leverages LLC bank address mapping information
and generates many accesses to a particular cache bank in
the LLC to maximize bank contention, which in turn slows
down victim accesses to that same bank. We implement and
validate our proposed Cache Bank-Aware DoS attack on two
popular embedded multicore platforms, a Raspberry Pi 4 and
an Nvidia Jetson Nano, using both synthetic and real-world
representative workloads. We find that our attack can generate
up to 9.7X slowdown to cross-core victim tasks running
in isolation. Furthermore, we show that existing isolation
mechanisms, such as cache partitioning and DRAM bandwidth
throttling [5], [8], [41], are unable to effectively mitigate our
attack. This is because, unlike prior DoS attacks that are
designed to generate many LLC misses [5], [8], [41], our
Cache Bank-Aware DoS attack generates LLC hits, not misses,
and thus does not consume any DRAM bandwidth.

To defend against our Cache Bank-Aware DoS attack, we
explore both software- and hardware-based prevention mech-
anisms. We first propose a software-based solution, which
extends MemGuard [49], to throttle the LLC bandwidth (not
DRAM bandwidth) of the offending cores. We show that it
can mitigate our attack but it comes at a very high per-
formance hit to best-effort tasks on the throttled cores. We
also evaluate a cache bank partitioning solution and show
that it can effectively prevent our attack without significant
performance impacts, although it would require hardware
support for general applications.

This paper makes the following contributions:
• We identify that cache bank contention can be exploited

by malicious actors for deploying effective Microarchi-
tectural DoS attacks in multicore processors.

• We propose and implement a Cache Bank-Aware DoS
attack that is specifically designed to induce bank con-
tention in the shared LLC of a multicore processor.

• We show that our attack bypasses existing DoS attack
mitigation mechanisms, namely LLC partitioning and
DRAM bandwidth throttling.

• We explore software- and hardware-based mitigation
strategies for addressing our proposed DoS attack and
evaluate their pros and cons.

The remainder of this paper is organized as follows: Sec-
tion II provides necessary background information on shared
caches and SRAM bank architectures. Section III details the
DoS attacks we evaluate in this paper, including our proposed
Cache Bank-Aware DoS attack. Section IV then evaluates the
DoS attacks on two popular embedded multicore platforms,
and Section V explores possible strategies for mitigating our
proposed attack. We discuss related work in Section VI and
conclude in Section VII.

II. BACKGROUND

In this section, we provide necessary background on mi-
croarchitectural DoS attacks and cache banking.

A. Microarchitectural Denial-of-Service Attacks

On modern multicore platforms, the processors are designed
such that parallel accesses can be made throughout the entire
memory hierarchy. At the shared cache level (e.g. LLC), this
is often achieved through the use of non-blocking caches that
allow for multiple concurrent misses. However, these non-
blocking caches can only support a finite number of misses,
which is dictated by the available hardware resources (e.g.
MSHRs). If this limit is reached, the cache blocks any further
accesses to it, which is known as cache blocking. Likewise,
at the main memory level, DRAM chips are composed of
multiple banks that can be accessed in parallel. While each
individual bank can only service one memory request at
a given time, the employment of multiple banks allow for
parallel accesses to be made to all banks simultaneously.
On the other hand, multiple memory accesses to the same
bank can instead lead to reduced memory performance due to
serialization, which is called DRAM bank contention.

Prior works have demonstrated that cache (LLC) block-
ing can be exploited by malicious actors to perform DoS
attacks [8], [41]. In these works, the attacks generate large
amounts of cache misses in order to induce LLC blocking.
In doing so, they prevent any important real-time tasks from
accessing the LLC. Taking it one step further, the authors
of [5] were able to induce both LLC blocking and DRAM
bank contention by carefully forcing LLC misses to stress a
certain DRAM bank. This resulted in their DoS attack being
significantly more effective in delaying a cross-core victim
that had its own dedicated cache partition. These prior works
also showed that cache space partitioning is not effective
in protecting victim tasks from potential DoS attacks, but
that DRAM bandwidth throttling is an effective mitigation
method [8], [41]. In this work, however, we find that DRAM

bandwidth throttling might not be sufficient to protect against
attacks that generate shared LLC bank contention.

B. Shared LLC and Cache Banking

In modern CPUs, shared caches employ multiple banks to
allow for more parallel accesses. Each bank is independently
addressable and has its own data lines. For example, both the
ARM Cortex-A57 and Cortex-A72 processors, which we use
in this paper, employ a shared LLC that is partitioned into two
tag banks to enable up to two simultaneous access to the L2
cache [1]. Each tag bank is further partitioned into four data
banks, which enables streaming accesses to those data banks.
Figure 1a gives a depiction of the bank layout used in the
shared LLC for both the A57 and A72 [1], [2].

Tag Bank 1 Tag Bank 2

Data Bank 1

Data Bank 2

Data Bank 3

Data Bank 4

Data Bank 1

Data Bank 2

Data Bank 3

Data Bank 4

(a) Top-level layout

Way
1

Way
2

… Way
M

Set 1 16B 16B … 16B

Set 2 16B 16B … 16B

… … … … …

Set N 16B 16B … 16B

Way
1

Way
2

… Way
M

Set 1 16B 16B … 16B

Set 2 16B 16B … 16B

… … … … …

Set N 16B 16B … 16B

Way
1

Way
2

… Way
M

Set 1 16B 16B … 16B

Set 2 16B 16B … 16B

… … … … …

Set N 16B 16B … 16B

Way
1

Way
2

… Way
M

Set 1 16B 16B … 16B

Set 2 16B 16B … 16B

… … … … …

Set N 16B 16B … 16B

Bank 1 Bank 2

Bank 3 Bank 4

(b) Detailed data-bank layout of a tag-bank

Fig. 1: L2 bank layout in ARM Cortex-A57 and Cortex-A72.

With regards to bank accesses, the mapping schemes used to
allocate and access those banks are publicly available in the
reference manuals for both cores [1], [2]. Namely, physical
address bit 6 is used to select the tag bank, while bits 4 and
5 are used to select which of the four data banks should
be accessed. Note that bits 4 and 5 are part of the offset
address within a cache-line (64 bytes). In other words, a single
cache line is split across four different LLC banks, with each

bank containing one fourth of the cache-line data (16 bytes).
Figure 1b depicts four of such LLC data banks. On the other
hand, bit 6 is outside of the cache-line granularity. As such,
two adjacent cache-lines are mapped to different tag banks,
which can be accessed simultaneously. However, if two or
more accesses are made to the same tag bank, they will suffer
from cache bank contention due to inevitable serialization.
This property can be exploited by attackers as we discuss in
the following section.

III. CACHE BANK-AWARE DENIAL-OF-SERVICE ATTACKS

In this section, we present the threat model, baseline mi-
croarchitectural DoS attacks and our proposed Cache Bank-
Aware DoS attack.

A. Threat Model

We assume that a victim task and one or more attacker
tasks are co-located on a multicore platform, which has a
shared last-level cache (LLC) and main memory (DRAM).
We assume that the victim and the attackers are partitioned
to run on dedicated CPU cores and LLC cache spaces. In
addition, we assume that the attackers have non-privileged
access on the target platforms and can only execute code
from the userspace. Lastly, we assume that the cache bank
address mapping information is known beforehand. Note that
such mappings are often publicly available for ARM cores
[1], [2]. We consider our assumptions realistic in many current
and future multicore embedded systems deployment scenarios
(e.g., connected ground/air vehicles and edge/IoT devices).

B. Baseline DoS Attacks

In this work, we use two previously proposed DoS attacks
as baselines. Namely, we use the bandwidth and latency-mlp
benchmarks from the IsolBench suite [41], which are engi-
neered to generate continuous memory accesses so as to cause
LLC or memory contention. The main difference between the
two is in their memory access patterns: bandwidth performs
sequential accesses over a 1D array, whereas latency-mlp
performs pointer chasing operations over multiple randomly
shuffled parallel linked lists (PLL). Both benchmarks can be
further configured to perform either read or write accesses, and
their working set size (WSS) can be adjusted to fit in any level
of the memory hierarchy. We configure them to perform write
operations, which have been shown to be more effective than
reads [8], and adjust their WSS to fit in either the LLC (2X
size of L1 data cache) or DRAM (2X size of LLC). We refer to
instances of the bandwidth DoS attacks as BwWrite(LLC) and
BwWrite(DRAM). Likewise, we call instances of the latency-
mlp DoS attacks as PLLWrite(LLC) and PLLWrite(DRAM),
respectively. Figure 2 shows the code listings of the baseline
DoS attacks. Note that the memory level parallelism (MLP) of
PLLWrite is experimentally determined, based on the method
described in [41] (mlp=6 on both A72 and A57 core).

1 for (int64 t i = 0; i<mem size; i += LINE SIZE)
2 {
3 ptr[i] = 0xff;
4 }

(a) BwWrite

1 static int* list[MAX MLP];
2 static int next[MAX MLP];
3
4 for (int64 t i = 0; i < iter; i++) {
5 switch (mlp) {
6 case MAX MLP:
7 .
8 .
9 case 2:

10 list[1][next[1]+1] = 0xff;
11 next[1] = list[1][next[1]];
12 /* fall−through */
13 case 1:
14 list[0][next[0]+1] = 0xff;
15 next[0] = list[0][next[0]];
16 }
17 }

(b) PLLWrite

Fig. 2: Baseline DoS attacks: BwWrite and PLLWrite perform
sequential and random memory updates, respectively.

C. Cache Bank-Aware DoS Attack

Our proposed Cache Bank-Aware attack is based on the
PLLWrite(LLC) attack described above, but is modified to
target a specific cache bank in the LLC so as to generate
maximum contention on that cache bank. The attack creates
multiple randomly shuffled linked lists over a memory block.
When creating the linked-lists, it calculates which cache bank
each entry would be assigned to, and only uses addresses that
would access the user specified target bank.

1 #define bit(addr,x) ((addr >> (x)) & 0x1)
2 int paddr to sram bank(unsigned long addr)
3 {
4 return ((bit(addr, 6) << 2) |
5 (bit(addr, 5) << 1) |
6 bit(addr, 4));
7 }

Fig. 3: Cache bank mapping function for Cortex-A57 and A72

Figure 3 shows a code listing for the bank address mapping
function used in creating the linked lists. For a given physical
address, this function returns a value between 0 and 7 that
represents the cache bank the address would access. As a
result, this allows us to manually pick physical addresses that
will access a target SRAM bank. Note that the function uses
low address bits 4, 5, and 6, all of which are within a 4KB
virtual memory page boundary. This means that no special
privilege is needed to control these address bits in order to
target a specific cache bank. As such, this attack is unlike prior
work that targets DRAM banks [5], which required privileged

system access or HugePage support to control DRAM bank
address bits because they are generally outside of a 4KB page
boundary. We set the WSS of our proposed attack to be LLC-
fitting in order to maximize the amount LLC hits generated.
The intuition here is that continuous LLC hits would generate
more cache bank contention than LLC misses due to the faster
access rate. As such, we refer to instances of our cache bank-
aware attack as BkPLLWrite(LLC).

IV. EVALUATION

In this section, we evaluate the effectiveness of our proposed
Cache Bank-Aware DoS attack on two out-of-order ARM-
based multicore platforms using both synthetic and real-world
victim workloads.

A. Multicore Platforms

We deploy all DoS attacks on two ARM-based embedded
multicore platforms: a Raspberry Pi 4 Model B and an Nvidia
Jetson Nano. The Raspberry Pi 4 equips a quad-core cluster
of Cortex-A72 cores, while the Jetson Nano equips a quad-
core cluster of Cortex-A57 cores. For both platforms, the L2
cache bank mapping information is publicly available in the
reference manuals for their respective ARM cores, with the
same addressing scheme being used for both of them [1], [2].
Table I shows the basic characteristics of the two platforms.

Platform Raspberry Pi 4 (B) Nvidia Jetson Nano
SoC BCM2711 Tegra X1

CPU
4x Cortex-A72 4x Cortex-A57

out-of-order out-of-order
1.5GHz 1.43GHz

Private L1 Cache 48KB(I)/32KB(D) 48KB(I)/32KB(D)
Shared L2 Cache 1MB (16-way) 2MB (16-way)

L2 (LLC) Bank Bits 4, 5, 6 4, 5, 6
Memory 4GB LPDDR4 4GB LPDDR4

TABLE I: Compared embedded multicore platforms.

For the operating systems, the Pi 4 runs Raspberry Pi OS
64-bit with Linux kernel 5.15, and the Nano runs Ubuntu 18.04
with Linux kernel 4.9. On both platforms, we employ a page
coloring technique to perform LLC set partitioning so that the
DoS attacks can not directly evict any victim task data from
the LLC. To that end, we patch the Linux kernel on both
tested platforms with the PALLOC memory allocator [48],
which exploits virtual memory page translations to enforce
page allocations to specific page colors. With PALLOC, we
partition the LLC into four equally sized partitions (colors)
and perform a 2/2 split of those partitions such that the victim
task gets half of the LLC space, while the attackers collectively
share the other half.

B. Impact on Synthetic Workloads

In this experiment, we evaluate the impacts of our proposed
Cache Bank-Aware DoS attack to a synthetic victim task and
compare its performance against the baseline DoS attacks. The
experiment setup is as follows: We run one instance of the
victim task alone on a single core (Core 0), and profile it to
obtain its solo performance. We then repeat the experiment

but this time with three instances of DoS attacker tasks on the
other cores (Cores 1-3). We compare the victim’s performance
under the DoS attacks with that of the solo case to quantify
the impacts of the DoS attackers. For the victim, we use
the bandwidth benchmark, which is configured to perform
read accesses. We vary the victim task’s WSS from 64KB
to 320KB, in increments of 64KB, all of which fit within the
dedicated cache partition (half of the LLC) and thus cannot
suffer from cache evictions by the DoS attackers. We also
include two larger WSS that do not fit into the victim’s cache
partition and thus may suffer from self evictions and DRAM-
level interference.

Figure 4 shows the results of all DoS attacks on both the
Pi 4 and the Nano. Note that the vertical dotted line in all
of the graphs represents the dedicated LLC space for the
victim task, with WSS left of the line being LLC-fitting and
WSS right of the line being DRAM-fitting. We use this same
notation for all subsequent experiments. First, we find that
when the WSS of the victim task fits in its cache partition
(left of the dotted vertical lines), the proposed Cache Bank-
Aware attack, BkPLLWrite(LLC), is noticeably more effective
in slowing down the victim’s execution time than the bank-
unaware baseline DoS attacks. On both platforms, we see
up to 4.6X slowdown from the BkPLLWrite(LLC) attackers,
whereas the baseline DoS attacks only generate up to 3.5X
and 3.3X slowdown on the Pi 4 and Nano, respectively. It is
important to note that none of these slowdowns are caused by
cache evictions, as the LLC miss rates in Figures 4b and 4d
clearly show. Because the cache is partitioned, the attacker
tasks are unable to evict the victim’s cache lines. As such,
the observed slowdowns are due to cache bank contention,
with our BkPLLWrite(LLC) attack generating more contention
compared to cache-bank oblivious DoS attacks.

On the other hand, when the WSS of the victim task
is large enough (right of the dotted vertical lines) such
that it experiences significant LLC misses (due to self-
evictions), we find that the baseline BwWrite(DRAM) and
PLLWrite(DRAM) attackers start to outperform our BkPLL-
Write(LLC) attackers. This was especially the case on the Pi
4, as the BwWrite(DRAM) attack generated 11.5X slowdown
against the 1MB WSS victim, while our BkPLLWrite(LLC)
attacks remained at ∼2.8X slowdown. The same also happened
on the Nano but to a lesser degree, with the BwWrite(DRAM)
attackers causing 3X slowdown against the 2MB WSS victim.
This is because the victim tasks in these cases (DRAM-fitting
WSS) are sensitive to both LLC and DRAM level interference.
As such, the baseline DRAM-fitting DoS attackers are able to
interfere with the victim at both the LLC and in DRAM. Our
BkPLLWrite(LLC) attackers are instead specifically designed
to only interfere at the LLC level, which is why they are less
effective against DRAM-sensitive victim tasks.

From these results, we make two key findings. First, our
proposed Cache Bank-Aware DoS attacks outperform baseline
attacks against LLC-sensitive victim workloads. Second, we
find that Cache Bank-Aware DoS attacks effectively bypass
LLC set partitioning mechanisms. This is because cache bank

 0

 2

 4

 6

 8

 10

64 128 192 256 320 512 1024

10.1 11.5

Sl
ow

do
w

n

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(a) Pi 4 - Slowdown

 0

 10

 20

 30

 40

 50

64 128 192 256 320 512 1024

LL
C

M
is

sr
at

e
(%

)

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(b) Pi 4 - LLC Miss Rate

 0

 2

 4

 6

 8

 10

64 128 192 256 320 1024 2048

Sl
ow

do
w

n

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(c) Nano - Slowdown

 0

 10

 20

 30

 40

 50

64 128 192 256 320 1024 2048

LL
C

M
is

sr
at

e
(%

)

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(d) Nano - LLC Miss Rate

Fig. 4: Impacts of DoS attackers to a synthetic victim task running on a dedicated core and cache partition (Y-axis: victim’s
execution time slowdown ratio for 4a and 4c, and victim task LLC miss rate for 4b and 4d. X-axis: victim’s WSS. The dotted
vertical lines indicate the cache partition boundary.)

allocations happen at a finer cache line granularity that can
not be accounted for with LLC set partitioning.

C. Impact of Cache Bank Partitioning

In this experiment, we evaluate the impact that cache bank
partitioning has in mitigating LLC bank contention. Much like
prior works [5], [8], [41], we found that LLC set partitioning
was unable to protect against DoS attacks, including our Cache
Bank-Aware DoS attack, because other hardware structures
in the LLC are still shared. In our case, LLC banks were
still accessible by all cores meaning that all LLC-fitting DoS
attacks could still effectively slowdown victim performance.
As such, we next want to determine whether partitioning the
LLC banks could help protect the victim tasks.

Note that cache bank partitioning cannot be realized via
OS-level page coloring because the page size granularity is
too coarse grained for cache bank control. Also, there is no
hardware-level support for partitioning the cache at a cache
bank granularity. Instead, we perform a simple experiment to
simulate a bank partitioned LLC. Concretely, we employ a
BkPLLRead(LLC) instance as a victim task and allocate all
of its memory addresses to cache data bank 0. We then run
it alongside three other BkPLLWrite(LLC) instances as the
attackers, and vary which data bank the attackers access. In

total, this gives us eight data points, one for each data bank
in the LLC.

 0

 2

 4

 6

 8

 10

0 1 2 3 4 5 6 7

Sl
ow

do
w

n

Attacker Data Bank

Raspberry Pi 4
Jetson Nano

Fig. 5: Impact of LLC bank partitioning on DoS attacker
effectiveness. The victim is allocated to data bank 0 while
the attacker’s allocated bank varies from 0 to 7 (data bank 0-3
∈ tag bank 0; data bank 4-7 ∈ tag bank 1).

Figure 5 shows the results on the Pi 4 and Nano. First, we
find that the victim task experiences significant contention (up
to ∼9.7X slowdown) when it is assigned to the same LLC

tag bank (data banks 0-3) as the attacker tasks. On the other
hand, when the attackers are allocated on a different LLC
tag bank (data bank 4-7), the victim achieves near perfect
isolation, indicating that the slowdowns caused by LLC-fitting
DoS attackers are mainly due to LLC tag bank contention.
Interestingly, when both the attackers and the victim are
accessing the same tag and data bank (data bank 0), the victim
task’s observed slowdown is considerably less than when they
access the same tag bank but different data banks (data bank
1-3). We speculate that this is due to differences in how sub
cache-line accesses are processed at the cache controller.

D. Impact of DRAM Bandwidth Throttling

In this experiment, we test the impact of memory bandwidth
throttling in mitigating DoS attacks. Note that prior work
suggested memory throttling to be an effective solution for
mitigating DoS attacks [8]. As in [8], we used a modified
MemGuard tool [49], which uses hardware performance coun-
ters to regulate memory bandwidth on a per-core basis. That is,
each core is given a set bandwidth budget, which it is allowed
to consume over the course of a period (e.g. 1 ms). If any
core empties its allotted budget before the end of the period,
the core is throttled by the OS until the beginning of the next
period. In our case, we configure MemGuard so that all three
attacker cores only receive a memory bandwidth budget of 100
MB/s each. The victim core then has unlimited access to the
memory bandwidth (i.e. it is never throttled).

Figure 6 shows the victim task slowdowns on the Pi 4 and
Nano. First and foremost, we find that memory bandwidth
throttling is extremely effective at mitigating the DRAM-
fitting baseline DoS attacks on both platforms. In the worst
case, we only see slowdowns of 6% to LLC-fitting victims
on both the Pi 4 and Nano. However, for the LLC-fitting
attackers we find their performance to be unaffected, with
the BkPLLWrite(LLC) attacks still achieving worst case slow-
downs of ∼4.5X on both platforms. This is because LLC-
fitting attackers are specifically intended to only access the
LLC (w/o generating any LLC misses). This means that the
attacker cores are never throttled as no memory accesses are
made and, by proxy, no memory bandwidth is consumed. In
the following experiments, we keep MemGuard enabled and
do not evaluate the baseline DRAM-fitting DoS attacks as
they can be effectively mitigated via MemGuard’s memory
bandwidth throttling. We instead focus on evaluating LLC-
fitting DoS attacks.

These results show that our Cache Bank-Aware DoS at-
tacks are able to effectively bypass both DRAM bandwidth
throttling and LLC set partitioning mechanisms. Since these
two mechanisms are the two of the most commonly employed
software-based solutions for combating temporal interference
on multicore platforms, we posit that newer solutions, either
software or hardware-based, are necessary to mitigate such
DoS attacks. We discuss such possibilities further in Section V.

 0

 2

 4

 6

 8

 10

64 128 192 256 320 512 1024

Sl
ow

do
w

n

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(a) Raspberry Pi 4

 0

 2

 4

 6

 8

 10

64 128 192 256 320 1024 2048

Sl
ow

do
w

n

WSS (KB)

Solo
BwWrite(LLC)
PLLWrite(LLC)

BkPLLWrite(LLC)
BwWrite(DRAM)
PLLWrite(DRAM)

(b) Jetson Nano

Fig. 6: Impact of DRAM bandwidth throttling on DoS attacker
effectiveness.

E. Impact of Memory Access Pattern

In this experiment, we explore the effect of memory access
patterns. Specifically, we vary both the victim and attacker
tasks to be either read or write tasks in a given scenario
(e.g. read victim vs. read attackers, read victim vs. write
attackers, etc.). For both the victim and attacker tasks, we use
the BwRead, BwWrite, BkPLLRead, and BkPLLWrite tasks,
and fix all of their WSSs to 64KB. Note that both cache
partitioning and MemGuard are enabled in this experiment
(and all subsequent ones) to ensure neither cache evictions
nor DRAM bandwidth contention can affect the results.

Figure 7 shows the results on the Pi 4 and Nano. Note
first that, between read and write attackers, the latter are
generally more effective in delaying the victim task in most
cases. For example, BkPLLWrite attackers (vs. a BkPLLRead
victim) generate up to 9.5X slowdown on Nano, whereas the
BkPLLRead attackers only generate up to 6.7X slowdown
against the same victim. However, the differences between
read and write DoS attackers are somewhat less pronounced
in Pi 4. Second, between read and write victim tasks, the
results are mixed as the BkPLLRead victim is more susceptible
to the DoS attacks than the BkPLLWrite victim whereas the
BwWrite victim is more susceptible than the BwRead victim
on both platforms.

 0

 2

 4

 6

 8

 10

BwRead
BwWrite

BkPLLRead

BkPLLWrite

Sl
ow

do
w

n
Solo

BwRead
BwWrite

BkPLLRead
BkPLLWrite

(a) Pi 4

 0

 2

 4

 6

 8

 10

BwRead
BwWrite

BkPLLRead

BkPLLWrite

Sl
ow

do
w

n

Solo
BwRead
BwWrite

BkPLLRead
BkPLLWrite

(b) Nano

Fig. 7: Impact of memory access patterns in victim and
attacker combinations. Note that the x-axis shows the victim
tasks used, while the legends (except Solo) indicate different
DoS attacker tasks used to delay the victims.

F. Impact of Varying the Number of Attackers

In this experiment, we evaluate the impact that the number
of concurrent DoS attackers has on victim performance. To this
point, we have allowed the attackers to occupy all remaining
CPU cores not utilized by the victim task. But this may not
always be a realistic assumption for some use-case scenarios
where the attackers may have access to only a portion of the
available hardware resources. For example, in a cloud-based
or virtualized environment, the attacker may have access to
only a handful of CPU cores. As such, we want to determine
if our Cache Bank-Aware DoS attacks could potentially work
in such settings. To test this, we run the same synthetic victim
task experiments as before, but vary the number of attacker
tasks from 1 to 3. Note that we only consider BwRead(LLC)
for the victim task, and BkPLLWrite(LLC) as DoS attackers in
this experiment.

Figure 8 shows the slowdown results for the Pi 4 and Nano.
As expected, we find that fewer DoS attackers do have less
impact to victim performance. Largely speaking, the amount
of slowdown experienced by the victim task increases linearly
with the number of attackers present. On the Pi 4 the victim
task sees worst case slowdowns of 1.8X, 3.3X and 4.6X with

 0

 2

 4

 6

 8

 10

64 128 192 256 320 512 1024

Sl
ow

do
w

n

WSS (KB)

Solo
+1 attack
+2 attack
+3 attack

(a) Raspberry Pi 4

 0

 2

 4

 6

 8

 10

64 128 192 256 320 1024 2048
Sl

ow
do

w
n

WSS (KB)

Solo
+1 attack
+2 attack
+3 attack

(b) Jetson Nano

Fig. 8: Impact of varying the number of concurrent BkPLLk-
Write(LLC) attackers.

1, 2 and 3 attackers, respectively. Likewise, on the Nano the
victim task see worst case slowdowns of 1.6X, 2.4X and 3.7X
as the number of attackers increases from 1 to 3. From this,
we find that our Cache Bank-Aware attacks would likely still
work in settings with restrictions on CPU core access, but
with noticeably less impact than if all physical CPU cores
were available.

G. Impact to Real-World Workloads

In this experiment, we evaluate the impact that DoS attack-
ers have on representative real-world workloads. For this, we
employ the following benchmarks:

• Five benchmarks from the SD-VBS suite [42], each using
the fullhd input size.

• Eight benchmarks from the SPEC2017 suite [37], each
using the default ref size.

• Three well-known DNN models of varying sizes: Pi-
lotNet [11], MobileNetV3 [17] and InceptionV3 [38].
For these workloads, we measure their average inference
latencies across 1000 input frames.

The experiment setup is then the same as in the synthetic
victim experiments. We assign the victim benchmark to Core
0 and initially run them alone. We then run each benchmark
again alongside three DoS attacker instances and calculate the
performance slowdowns the victim task experiences.

 0

 0.5

 1

 1.5

 2

disparity

mser
sift

stitch
tracking

gcc
mcf

namd
xalancbmk

parest

povray

lbm fotonik3d

PilotNet

MobileNetV3

InceptionV3

geomean

2.3

Sl
ow

do
w

n

Solo
BwWrite(LLC)

PLLWrite(LLC)
BkPLLWrite(LLC)

(a) Raspberry Pi 4

 0

 0.5

 1

 1.5

 2

disparity

mser
sift

stitch
tracking

gcc
mcf

namd
xalancbmk

parest

povray

lbm fotonik3d

PilotNet

MobileNetV3

InceptionV3

geomean

Sl
ow

do
w

n

Solo
BwWrite(LLC)

PLLWrite(LLC)
BkPLLWrite(LLC)

(b) Jetson Nano

Fig. 9: Impact of DoS attackers on representative real-world benchmarks. Note that both LLC partitioning and DRAM bandwidth
throttling are enabled.

Figure 9 shows the results on the Pi 4 and Nano. In general,
we see behavior similar to that in Figures 4 and 6. Most
benchmarks are significantly impacted by the LLC-fitting DoS
attacks, with our cache bank-aware attack, BkPLLWrite(LLC),
being the most effective (>2X on average than the bank-
oblivious ones). We generally see higher slowdowns on the
Pi 4, up to 2.3X, than the Nano, up to 1.6X. Note that Pi 4’s
Cortex-A72 cores have a more advanced and faster design than
Nano’s Cortex-A57 cores. This includes improvements in the
L2 cache for high bandwidth workloads [18], suggesting that
advanced processors could be more vulnerable to our attacks.
Moreover, note that these slowdowns are observed despite
the fact that both LLC partitioning and memory bandwidth
throttling are enabled to protect the victims.

In summary, our attacks are effective in slowing down real-
world workloads and thus are dangerous in real-time systems
because (1) small changes to execution timings can have
major impacts to system safety, and (2) they can bypass
existing defense mechanisms, including memory bandwidth
throttling. To address this second point, we next explore
possible mitigation strategies to defend against LLC-fitting
cache bank-aware DoS attacks.

V. MITIGATION

In this section, we explore a possible software-based solu-
tion and other hardware-based solutions that could be imple-
mented to potentially protect against our attack.

A. LLC Bandwidth Throttling

As discussed in Section IV-D, DRAM bandwidth throttling
is unable to mitigate our Cache Bank-Aware DoS attack be-
cause the attackers themselves do not access memory, meaning
that they never get throttled. Based on this insight, we explore
the potential for LLC bandwidth throttling. In theory, because
the DoS attackers continually access the LLC, throttling LLC
traffic should help to mitigate their impacts. To achieve this,
we modify the vanilla MemGuard module to track L1 data
cache misses instead of LLC misses. In doing so, we can
instead limit the amount of LLC accesses that each CPU core
is allowed to make in a given period. Using this modified
version of MemGuard, which we call LLCGuard, we perform
the same experiments as in Figure 6. In this case, though, we
fix the victim WSS at 64KB and instead vary the LLC budget
that each attacking core receives per period. In total, we test
eleven different LLC bandwidth budgets, going from 50 MB/s
up to 1000 MB/s.

 0

 0.5

 1

 1.5

 2

50 100 200 300 400 500 600 700 800 900 1000

Sl
ow

do
w

n

Attacker LLC Bandwidth Budget (MB/s)

Solo
BwWrite(LLC)

PLLWrite(LLC)
BkPLLWrite(LLC)

(a) Raspberry Pi 4

 0

 0.5

 1

 1.5

 2

50 100 200 300 400 500 600 700 800 900 1000

Sl
ow

do
w

n

Attacker LLC Bandwidth Budget (MB/s)

Solo
BwWrite(LLC)

PLLWrite(LLC)
BkPLLWrite(LLC)

(b) Jetson Nano

Fig. 10: Impact of LLC bandwidth throttling (LLCGuard) on
DoS attacker effectiveness.

Figure 10 shows the impact of LLC bandwidth throttling on
both the Pi 4 and the Nano platforms. As expected, we find
that LLC bandwidth throttling can effectively protect against
all LLC-fitting DoS attacks, including our Cache Bank-Aware
DoS attack, when the LLC budget is set low enough. For
example, at 50 MB/s the attackers only achieve worst case

slowdowns of 5% and 1% on the Pi 4 and Nano, respectively.
As we increase the budget, however, we again see non-trivial
slowdowns to victim performance. Even at 1000 MB/s, or
1/15th of the measured peak LLC bandwidth, our cache bank-
aware attacks can slowdown the victim by 2X and 1.7X on
the Pi 4 and Nano, respectively.

Moreover, we find that utilizing LLCGuard could incur
an unacceptably high performance cost to the throttled best-
effort cores. For example, if we assume a tolerable slowdown
threshold of 10% for the victim, the attacker cores’ LLC
bandwidth would have to be throttled to 50 MB/s on both
platforms to defend against our cache bank-aware DoS attacks.
Compared to the 15 GB/s peak LLC bandwidth we observe
without throttling, this means that all throttled best-effort cores
could suffer up to ∼300X slowdown. For reference, to achieve
the same 10% slowdown against DRAM-fitting DoS attacks,
memory bandwidth throttling by MemGuard could cause up
to ∼40X slowdown to the throttled best-effort cores.

Peak BW (MB/s) Throttled BW (MB/s) Max Slowdown
DRAM Attackers 4,000 100 40X

LLC Attackers 15,000 50 300X

TABLE II: Comparison of best-effort slowdowns incurred by
DRAM and LLC bandwidth throttling mechanisms in order to
achieve <10% real-time slowdown.

Table II compares the slowdowns incurred by both forms
of bandwidth throttling. In order to avoid such a massive
performance hit from throttling, we next discuss potential
hardware-based solutions to protect against LLC-fitting DoS
attacks.

B. Hardware-Based Solutions

To protect against LLC-fitting DoS attacks, there are several
possible hardware-based solutions. First, a prime candidate
is hardware-supported LLC bank partitioning. We already
evaluated the impact of cache bank partitioning in IV-C,
which was able to effectively protect against our Cache Bank-
Aware DoS attack. However, cache bank partitioning cannot be
achieved in software (at the OS level) on current ARM-based
multicore platforms. This is because the physical address bits
used for determining the LLC bank also fit inside the offset
field for the cache address, so it is impossible for the OS to
have any control over LLC bank allocations. As such, cache
bank partitioning can only be effectively implemented with
hardware support.

Second, our proposed software solution, LLCGuard, in V-A
has shortcomings related to its software-based implementation.
Namely, because it operates at a 1 ms period, it can still allow
for large amounts of LLC accesses to happen in a short time.
As a result, LLC bank contention can still be induced during
these short bursts of accesses. Alternatively, a hardware-based
throttling solution could operate at a finer granularity that
instead spreads LLC accesses more evenly across the entire
throttle period, as in BRU [13] and Intel RDT [19], [35],
thereby potentially reducing the negative performance impact

of throttling best-effort cores. We would like to explore this
possibility in the future.

Lastly, another potential solution is the use of complex
address mapping schemes to map physical addresses to cache
banks. In this paper, we focused on ARM-based platforms as
their LLC bank mapping schemes are publicly available. In
addition, when address mapping schemes are simple, as in
our tested platforms, they could be reverse-engineered with
little effort even without public information. As such, another
mitigation strategy would be to employ a complex addressing
scheme, such as those used in other CPU architectures. For
example, Intel CPUs often use complex mappings for their
LLC bank and slice allocations [15], which makes it difficult
to reverse-engineer the mappings. However, it is important to
note that a motivated adversary may still be able to reverse
engineer such complex mappings. Once the mapping of a
certain processor is decoded, all systems based that processor
would then be vulnerable to our attacks.

VI. RELATED WORK

Microarchitectural DoS attacks have been studied for several
different types of shared resources in multicore systems.
Moscibroda et al. demonstrated DoS attacks on DRAM con-
trollers [29], and the FR-FCFS [31] scheduling algorithm. This
then led to the proposals of many DRAM controller scheduling
algorithms that focus on fairness [26], [30]. Keramidas et al.
studied DoS attacks on cache space and proposed a cache
replacement policy that allowed less space for attackers [23].
Woo et al. investigated DoS attacks on bus bandwidth and
shared cache space in a simulated environment [43]. More
recently, Valsan et al. and Bechtel et. al showed that cache
internal hardware buffers are susceptible to DoS attacks and
have demonstrated their severity [7], [8], [41]. Iorga et al.
studied the DoS attacks from [8] and presented a statistical
approach for evaluating DoS attacks on embedded multicore
platforms [21]. Several researchers have also studied various
interference channels on GPUs. Yandrofski et al, systemati-
cally investigated interference channels on Nvidia’s discrete
GPUs by generating various “enemy” programs [45]. Bechtel
et al., studied potential DoS attacks on Intel iGPUs [6], which
share a LLC with the CPU.

Even in a normal scenario, applications on a multicore plat-
form can contend for shared hardware resources, which in turn
affect their timing behaviors. Consequently, there is a large
body of work in the real-time systems research community to
provide stronger isolation in multicore. This includes various
software and hardware mechanisms to manage the shared
resources [14], [24], [25], [28], [32], [33], [36], [44], [47],
[49]. This desire for greater management of shared hardware
resources in multicore has been seen by major industry players
as well. Intel introduced their Resource Director Technology
(RDT) [20] set of tools, which can be used to manage
both shared cache space and memory bandwidth with lower
overheads. Likewise, ARM introduced a similar framework for
their processors called Memory System Resource Partitioning
and Monitoring (MPAM) [3]. Despite these efforts, it has been

shown that cache space partitioning techniques are unable to
mitigate DoS attacks as other hardware structures are still
shared among all cores [5], [8], [41]. On the other hand,
DRAM bandwidth throttling has shown much greater ability
in defending against such DoS attacks [8]. In this work,
however, we proposed a new DoS attack that makes both cache
partitioning and DRAM bandwidth throttling ineffective on
commercial off-the-shelf (COTS) ARM multicore processors
by inducing contention on a cache bank.

Contention on memory (DRAM) banks is a well-known
issue and has been extensively studied for many years. As
early as 1985, Bailey [4] identified memory bank contention
as a bottleneck for supercomputers and discussed possible
solutions to mitigate performance loss. Blelloch et al. [10]
evaluated the performance loss that could be caused by mem-
ory bank contention on high-bandwidth multiprocessors. As
multicore architectures became the norm and the memory
wall became a significant bottleneck, many researchers in
both academia and industry investigated the DRAM bank
contention problem [27], [39], [50]. Cache bank contention,
in contrast, has received much less attention. Evenblij et
al. [12] evaluated the performance impacts of bank contention
in both SRAM and STT-MRAM based caches using the
Gem5 simulator [9]. They found that SRAM caches were
unaffected by contention when eight or more banks were
present, only having a worst-case slowdown of 5%. While
there are some works that exploit cache bank contention in
private L1 caches as side-channels to steal secret data [22],
[46], they do not consider bank contention on shared L2/L3
caches and their performance impacts to cross-core victims.
In contrast, we show the impact of cache bank contention on
shared L2 caches of real COTS ARM multicore processors
and demonstrate significant real-world performance impacts
to cross-core victims that cannot be mitigated by conventional
isolation techniques, such as cache partitioning or memory
bandwidth throttling.

VII. CONCLUSION

In this paper, we showed that deliberately generating bank
contention in the shared last-level cache (LLC) is an effective
way to delay cross-core victims on modern multicore plat-
forms. We developed a new attack, called a Cache Bank-
Aware DoS attack, that generates a large number of par-
allel requests to a specific LLC bank to induce maximum
contention on the bank. From extensive experiments on two
popular ARM multicore platforms, we showed that our attack
significantly outperforms prior DoS attacks in delaying LLC-
sensitive cross-core victim tasks. Furthermore, we showed
that our attack effectively bypasses two commonly employed
defense mechanisms: LLC set partitioning and DRAM band-
width throttling. We explored both software- and hardware-
based defense mechanisms and discussed their limitations in
mitigating our DoS attack. For future work, we plan to evaluate
our attack on diverse hardware platforms. We also plan to
explore more effective mitigation techniques.

ACKNOWLEDGEMENTS

This research is supported in part by NSF grant CNS-
1815959, CPS-2038923 and NSA Science of Security initia-
tive contract no. H98230-18-D-0009.

REFERENCES

[1] ARM. Cortex™-A57 Technical Reference Manual, Rev: r1p3, 2016.
[2] ARM. Cortex™-A72 Technical Reference Manual, Rev: r0p3, 2016.
[3] ARM. Arm Architecture Reference Manual Supplement: Memory System

Resource Partitioning and Monitoring (MPAM), DDI:0598B.b, 2020.
[4] D. H. Bailey. Vector Computer Memory Bank Contention. Technical

report, NASA, 1985.
[5] M. Bechtel and H. Yun. Memory-Aware Denial-of-Service Attacks

on Shared Cache in Multicore Real-Time Systems. Transactions on
Computers, 2021.

[6] M. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Resources
in Intel’s Integrated CPU-GPU Platforms. In ISORC, 2022.

[7] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun. DeepPicar: A
Low-cost Deep Neural Network-based Autonomous Car. In RTCSA,
2018.

[8] M. G. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention. In RTAS, 2019.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The Gem5
simulator. ACM SIGARCH Computer Architecture News, 2011.

[10] G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting
for Memory Bank Contention and Delay in High-Bandwidth Multipro-
cessors. In SPAA, 1995.

[11] M. Bojarski et al. End-to-End Learning for Self-Driving Cars. arXiv,
2016.

[12] T. Evenblij, M. Perumkunnil, F. Catthoor, S. Sakhare, P. Debacker,
G. Kar, A. Furnemont, N. Bueno, J. I. Gómez-Pérez, and C. Tenllado. A
Comparative Analysis on the Impact of Bank Contention in STT-MRAM
and SRAM Based LLCs. In ICCD, 2019.

[13] F. Farshchi, Q. Huang, and H. Yun. BRU: Bandwidth Regulation Unit
for Real-Time Multicore Processors. In RTAS, 2020.

[14] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. Deterministic
Memory Abstraction and Supporting Multicore System Architecture. In
ECRTS, 2018.

[15] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić. Make the
Most Out of Last Level Cache in Intel Processors. In EuroSys, 2019.

[16] A. Hamann. Industrial Challenges: Moving From Classical to High
Performance Real-Time Systems. In WATERS, 2018.

[17] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al. Searching for MobileNetV3. In
ICCV, 2019.

[18] M. Humrick. ARM Cortex-A72 Architecture Deep Dive . https://www.
tomshardware.com/reviews/arm-cortex-a72-architecture,4424.html.

[19] Intel. Intel® Resource Director Technology (Intel® RDT) Framework.
https://www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html.

[20] Intel. Intel 64 and IA-32 Architectures Software Developer Manuals,
Vol 3b, May 2020.

[21] D. Iorga, T. Sorensen, J. Wickerson, and A. F. Donaldson. Slow and
Steady: Measuring and Tuning Multicore Interference. In RTAS, 2020.

[22] Z. H. Jiang and Y. Fei. A Novel Cache Bank Timing Attack. In ICCAD,
2017.

[23] G. Keramidas, P. Petoumenos, S. Kaxiras, A. Antonopoulos, and D. Ser-
panos. Preventing denial-of-service attacks in shared cmp caches. In
SAMOS, 2006.

[24] H. Kim, A. Kandhalu, and R. Rajkumar. A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems. In ECRTS, 2013.

[25] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith. At-
tacking the One-Out-of-M Multicore Problem by Combining Hardware
Management with Mixed-Criticality Provisioning. Real-Time Systems,
2017.

[26] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In MICRO, 2010.

[27] S. Li and B. Jacob. Statistical DRAM modeling. In MEMSYS, 2019.

[28] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-Time Cache Management Framework for Multi-core
Architectures. In RTAS, 2013.

[29] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems. In USENIX Security
Symposium, 2007.

[30] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In MICRO, 2007.

[31] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memory
Access Scheduling. In ACM SIGARCH Computer Architecture News,
2000.

[32] S. Roozkhosh and R. Mancuso. The Potential of Programmable Logic
in the Middle: Cache Bleaching. In RTAS, 2020.

[33] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm,
M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann. Memory Utilization-Based Dynamic Bandwidth
Regulation for Temporal Isolation in Multi-Cores. In RTAS, 2022.

[34] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals
of Superscalar Processors. Waveland Press, 2013.

[35] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger. A Closer
Look at Intel Resource Director Technology (RDT). In RTNS, pages
127–139, 2022.

[36] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: a System-
wide Framework for Memory Bandwidth Profiling and Management. In
RTSS, 2020.

[37] SPEC CPU2017. https://www.spec.org/cpu2017.
[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the Inception Architecture for Computer Vision. In CVPR, 2016.
[39] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,

A. Davis, and N. P. Jouppi. Rethinking DRAM Design and Organization
for Energy-Constrained Multi-Cores. In ISCA, 2010.

[40] P. K. Valsan and H. Yun. Medusa: a predictable and high-performance
dram controller for multicore based embedded systems. In CPSNA,
2015.

[41] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In RTAS, 2016.

[42] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor. SD-VBS: The San Diego vision
benchmark suite. In IISWC, 2009.

[43] D. H. Woo and H. Lee. Analyzing performance vulnerability due to
resource denial of service attack on chip multiprocessors. In CMP-MSI,
2007.

[44] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee.
Holistic Resource Allocation for Multicore Real-Time Systems. In
RTAS, 2019.

[45] T. Yandrofski, J. Chen, N. Otterness, J. H. Anderson, and F. Smith.
Making Powerful Enemies on NVIDIA GPUs. In RTSS, 2022.

[46] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: A Timing
Attack on OpenSSL Constant-Time RSA. Journal of Cryptographic
Engineering, 2017.

[47] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a Dynamic Cache
Partitioning System Using Page Coloring. In PACT, 2014.

[48] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. In RTAS, 2014.

[49] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In RTAS, 2013.

[50] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM Memory
System Optimizations for SMT Processors. In HPCA, 2005.

https://www.tomshardware.com/reviews/arm-cortex-a72-architecture,4424.html
https://www.tomshardware.com/reviews/arm-cortex-a72-architecture,4424.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.spec.org/cpu2017

	Introduction
	Background
	Microarchitectural Denial-of-Service Attacks
	Shared LLC and Cache Banking

	Cache Bank-aware Denial-of-Service Attacks
	Threat Model
	Baseline DoS Attacks
	Cache Bank-Aware DoS Attack

	Evaluation
	Multicore Platforms
	Impact on Synthetic Workloads
	Impact of Cache Bank Partitioning
	Impact of DRAM Bandwidth Throttling
	Impact of Memory Access Pattern
	Impact of Varying the Number of Attackers
	Impact to Real-World Workloads

	Mitigation
	LLC Bandwidth Throttling
	Hardware-Based Solutions

	Related Work
	Conclusion
	References

