
Cache Bank-Aware Denial-of-Service
Attacks on Multicore ARM Processors

Michael Bechtel and Heechul Yun
University of Kansas, USA

Cyber Physical Systems (CPS)

● Deployed in many different areas
○ Automotive, avionics, healthcare, etc.

● Modern CPS require high performance platforms

Autonomous Vehicles Autonomous UAVs

2

Multicore Platforms

● Increasingly demanded for modern CPS
○ Better performance than unicore
○ Better satisfy size, weight and power (SWaP) constraints

● Problem: They are less predictable

3

Shared Resource Contention

● Many resources are shared by all cores

● Worst case performance is unpredictable

4

Core0 Core 1 Core 2 Core3

Shared Cache

DRAM

Shared Cache Shared caches are important
resources.

Cache Partitioning

● Common technique used for isolation in shared caches
● Give each core its own dedicated slice of the cache
● Prevents unwanted cross-core LLC evictions
● Does not prevent other forms of contention in the cache

5

Contention on Shared Internal Buffers in LLC

Miss Status Holding
Registers1

● Track outstanding
cache misses.

● Modern caches use internal buffers to manage memory accesses
● LLC partitioning can not mitigate contention on these buffers

Writeback Buffer2

● Holds evicted dirty
lines (writebacks).

6

1 Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. IEEE Intl. Conference on
Real-Time and Embedded Technology and Applications Symposium (RTAS), IEEE, 2016.
2 Michael Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2019.

Memory Bandwidth Throttling

● Another common approach for mitigating contention
● Limit access of non-critical tasks to memory resources
● Can effectively mitigate internal LLC buffer contention1

● In this work, we show that memory bandwidth throttling is not sufficient

7
1 Michael Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on
Real-Time and Embedded Technology and Applications Symposium (RTAS), April 2019.

Cache Bank Organization
● Modern caches employ bank architectures to improves MLP
● Each bank can only service one request at a time
● All banks can be accessed simultaneously

8

Tag bank

ARM Cortex A57/A72 LLC Bank Organization

63 0

Data bank

5,46

Cache Bank Contention

● Cache banks also suffer from contention
● Occurs when multiple accesses are made to the same bank

9

Core0 Core 1

Shared Cache

Tag Bank 0 Tag Bank 1

Core0 Core 1

Shared Cache

Tag Bank 0 Tag Bank 1

Nominal Case Contention Case

Outline

● Background
● Cache Bank-Aware DoS Attacks
● Evaluation
● Mitigation
● Conclusion

10

Threat Model

● Attackers can not directly affect the victim

● Attackers can not run privileged code

● System has a shared cache

11

Baseline DoS Attacks

● Both perform continuous write accesses
● Can be configured to access LLC or DRAM

○ E.g. BwWrite(LLC), BwWrite(DRAM), etc.

12

Sequential Attacker
(BwWrite)

Random Attacker
(PLLWrite)

Cache Bank-Aware DoS Attack
● Target and generate contention in a single cache bank

○ Slows down accesses made by victim tasks to that bank
● All accesses are LLC hits ⇒ Can still impact cross-core victim

13

Core0 Core 1 Core 2 Core3

Shared Cache

Tag Bank 0 Tag Bank 1

Cache Bank-Aware DoS Attack
● Allocate a large memory chunk
● Iterate over the memory addresses at a cache line granularity

○ Only keep addresses that map to a target LLC data bank

● Split and access addresses across multiple parallel linked lists
● We refer to this attack as BkPLLWrite(LLC)

14

Outline

● Background
● Cache Bank-Aware DoS Attacks
● Evaluation
● Mitigation
● Conclusion

15

Tested Platforms

● Both platforms have the same LLC bank architectures
○ 2 tag banks X 4 data banks ⇒ 8 total banks

16

Methodology

● Run victim alone and with DoS attackers
○ Measure victim slowdown and LLC miss rates

● LLC set partitioning (PALLOC)
○ Split LLC into 4 partitions, 2/2 between victim and attackers

Core0 Core 1 Core 2 Core3

Shared LLC

DRAM

Victim Attackers

17

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by attackers

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

Cache Bank Partitioning Experiment
● Simulate LLC bank partitioning
● Victim - BkPLLRead(LLC) ⇒ Data bank 0
● Vary data bank accessed by co-runners

18

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

LLC Bank Partitioning Results

● Up to 9.7X slowdown when same tag bank is accessed
● No impact when victim and attackers access different tag banks

19

9.7X

Synthetic Workload Experiment

● Victim task ⇒ BwRead
○ Read intensive benchmark that is cache bank-oblivious
○ Vary the working set size (WSS) to be LLC and DRAM-fitting

● Attacker tasks
○ DoS attacks on DRAM ⇒ BwWrite(DRAM), PLLWrite(DRAM)
○ Bank-oblivious cache attacks ⇒ BwWrite(LLC), PLLWrite(LLC)
○ Cache Bank-Aware attack ⇒ BkPLLWrite(LLC)

20

Core0 Core 1 Core 2 Core3

Shared LLC

DRAM

Victim Attackers

Impact to Synthetic Workloads

● Bank-aware attacks are superior to bank-oblivious attacks
○ When victim's working set size is LLC-fitting
○ No slowdown is due to LLC evictions

21

Slowdown LLC Missrate

Memory Bandwidth Throttling Experiment

● Run the synthetic victim tests with memory bandwidth throttling enabled
● We use MemGuard, a per-core bandwidth regulator

○ Sets a bandwidth budget for each core over a period (e.g. 1 ms)
○ Throttles cores that exceed their budget until the next period

● Victim gets full bandwidth access (i.e. no throttling)
● Attackers are assigned a budget of 100 MB/s

● Does MemGuard protect against cache DoS attacks?

22

Impact of Memory Bandwidth Throttling

● Throttling does protect against DRAM-fitting attacks
● None of the cache DoS attacks are affected

○ Especially the Cache Bank-Aware attacks

23

Real-World Workload Experiment
● We run the same DoS attacks against real-world benchmarks:

○ Five benchmarks from the SD-VBS suite (input size = fullhd)
○ Eight benchmarks from the SPEC2017 suite (input size = ref)
○ Three representative DNN models: PilotNet, MobileNetV3 and InceptionV3

● Both cache partitioning and memory bandwidth throttling are enabled
● We only run cache DoS attacks in these tests

○ DRAM bandwidth contention can be mitigated with MemGuard (bandwidth throttling)

24

Impact to Real-World Benchmarks

● Cache DoS attacks are still effective
● Cache Bank-Aware attacks again have the most impact

○ More than 2X on average over bank-oblivious attacks

25

Outline

● Background
● Cache Bank-Aware DoS Attacks
● Evaluation
● Mitigation
● Conclusion

26

LLC Bandwidth Throttling

● Idea: Throttle LLC bandwidth instead of memory bandwidth
○ To mitigate cache bank contention

● By default, MemGuard tracks per-core LLC misses
○ Calculates memory bandwidth consumed by each core

● We modify MemGuard to instead track per-core L1 misses
○ Regulates LLC traffic instead of DRAM traffic

● Victim still has full LLC bandwidth access
● Attackers' LLC budget is varied from 50MB/s to 1GB/s

27

Impact of LLC Bandwidth Throttling

● LLC bandwidth throttling does protect against cache DoS attacks
○ When attack budgets are set low enough (e.g. 50MB/s)

28

LLC Bandwidth Throttling Tradeoff

● LLC bandwidth throttling can provide isolation
● But at a notable cost to system performance

○ To achieve <10% slowdown, best-effort LLC bandwidth is throttled by ~300X
● This tradeoff is not desirable for general system performance

29

Hardware-Based Solutions

● LLC bank partitioning
○ Could achieve isolation in a simulated test case
○ Would require hardware modifications
○ May require smaller cache space and bandwidth

● Complex bank address mappings
○ Difficult to reverse engineer
○ Rendered ineffective if mapping is discovered

● LLC bandwidth throttling
○ Software-based approach works, but at a cost
○ Hardware-based approaches may not have to pay such costs
○ Our future work

30

Outline

● Background
● Cache Bank-Aware DoS Attacks
● Evaluation
● Mitigation
● Conclusion

31

Conclusion

● We identify that cache bank contention as an important unaddressed problem
○ Can be exploited to delay cross-core victim tasks

● We develop a Cache Bank-Aware DoS attack
○ Highly effective at delaying cross-core victim tasks

● We show that our attack can bypass existing defense techniques
○ Both cache partitioning and memory bandwidth throttling

● We explore new mitigation mechanisms to address our attack
○ LLC bandwidth throttling is possible, but at a cost
○ Other mitigations require hardware support

32

Thank you!
Disclaimer:

This research is supported by NSF grant CNS-

1815959, CPS-2038923 and NSA Science of Security initia-

tive contract no. H98230-18-D-000.

33

APPENDIX

34

Comparison to Existing DoS Attacks - Nano

● Like the Pi 4, Bank-Aware attacks have the most impact.
● DRAM-fitting attacks are less effective.

○ Likely due to differences in the memory controller.

36

Slowdown LLC Missrate

Impact to Real-World Benchmarks

● LLC-fitting DoS attacks are still effective
● Cache Bank-Aware attacks again have the most impact

○ More than 2X on average over bank-oblivious attacks

37

Pi 4 Nano

Impact of DRAM Bandwidth Throttling

● Throttling does protect against DRAM-fitting attacks
● None of the LLC-fitting DoS attacks are affected

○ Especially the Bank-Aware DoS attacks

38

Pi 4 Nano

Impact of Varying # of Attackers

● As expected, more attackers have greater impact
● Notable slowdown still happens with few attackers

35

Pi 4 Nano

