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Abstract—Tasks running on a Commercial Off-The-Shelf
(COTS) multicore processor can suffer significant execution time
variations due to inter-core interference in accessing shared
hardware resources such as shared last-level cache (LLC). Page-
coloring is a well-known OS technique, which can partition the
LLC space among the cores, to improve isolation.

In this paper, we evaluate the effectiveness of page-coloring
based cache partitioning on three COTS multicore platforms. On
each platform, we use two carefully designed micro-benchmarks
and perform a set of experiments, which generate very high inter-
ference at the shared LLC, with and without cache partitioning.

We made two interesting findings: (1) Without cache-
partitioning, a task can suffer up to 103X slowdown due to
interference at the shared LLC. (2) More surprisingly, we found
that cache partitioning does not necessarily eliminate interference
in accessing the LLC, even when the concerned task only accesses
its dedicated cache partition (i.e., all memory accesses are cache
hits); we observe up to 14X slowdown in such a configuration. We
attribute this to contention in the Miss Status Holding Registers
(MSHRs) of the LLC.

I. INTRODUCTION

Commercial Off-The-Shelf (COTS) multicore processors
are increasingly being adopted in autonomous cars, unmanned
aerial vehicles (UAV), and other critical cyber-physical sys-
tems (CPS). While these COTS multicore processors offer
numerous benefits, they do not provide predictable timing—a
highly desired property in many CPS applications.

In a COTS multicore system, the execution time of a task is
determined not only by the task and the underlying hardware
architecture, but also by co-runners on different cores due
to interference in the shared hardware resources. One of the
major source of interference is shared last-level cache (LLC).
When more than two tasks execute in parallel on cores that
share the LLC, tasks can evict each other’s valuable cache-
lines, which cause negative performance impacts. Cache-
partitioning, which partitions the cache space among the cores,
is a well-known solution to counter this problem [11], [15].

In this paper, we evaluate the effectiveness of cache par-
titioning in improving timing predictability on three modern
COTS multicore platforms: one in-order (ARM Cortex-A7)
and two out-of-order (ARM Cortex-A15 and Intel Nehalem)
architecture based quad-core platforms. We use two carefully
designed micro-benchmarks and perform a set of experiments
to investigate the impacts of shared LLC to the application ex-
ecution times—with and without applying cache-partitioning.
In designing the experiments, we consider memory-level-
parallelism (MLP) of modern COTS multicore architecture—
non-blocking caches and DRAM bank parallelism—and intend

to find worst-case scenarios where a task’s execution time
suffers the most slowdown due to cache interference.

From the experiments, we made several interesting findings.
First, unlimited cache sharing can cause unacceptably high
interference; we observe up to 103X slowdown (i.e., the task’s
execution time is increased by 103 times due to co-runners
on different cores). Second, cache-partitioning is effective
especially in the in-order architecture, as it almost completely
eliminates cache-level interference. In out-of-order architec-
tures, however, we observe significant interference even after
cache partitioning is applied. Concretely, we observe up to
14X slowdown even when the task under consideration only
accesses its dedicated cache partition (i.e., all memory accesses
are cache hits). We attribute this to contention in the shared
miss-status holding registers (MSHRs) [8] in the LLC (See
Section V).

Our contributions are as follows: (1) experiment designs
that help expose the degree of interference in the shared
LLC; (2) detailed evaluation results on three COTS multicore
platforms showing the performance impacts of the cache-
level interference. To the best of our knowledge, this is
the first paper that reports the worst-case performance impact
of MSHR contention on COTS multicore platforms.

The rest of the paper is organized as follows. Section II
describe necessary background on modern COTS multicore
architecture. Section III describe the three COTS multicore
platforms we used in this paper. Section IV experimentally
analyze MLP of the hardware platforms. Section V investi-
gate the impacts of cache (LLC) interference on the tested
platforms. We conclude in Section VI.

II. BACKGROUND

In this section, we provide necessary background on COTS
multicore architecture and software based resource partitioning
techniques.

A typical modern COTS multicore architecture is composed
of multiple independent processing cores, multiple layers
of private and shared caches, and a shared memory con-
troller(s) and DRAM memories. To support high performance,
processing cores in many embedded/mobile processors are
adopting out-of-order designs in which each core can generate
multiple outstanding memory requests [12], [4]. Even if the
cores are based on in-order designs, in which one core can
only generate one outstanding memory request at a time,
they collectively can generate multiple requests to the shared
memory subsystem. Therefore, the memory subsystem must be



TABLE I: Evaluated COTS multicore platforms.

Cortex-A7 Cortex-A15 Nehalem

Core 4cores@0.6GHz 4cores@1.6GHz 4cores@2.8GHz
in-order out-of-order out-of-order

LLC 512KB, 8way 2MB, 16way 8MB, 16way
DRAM 2GB, 16banks 2GB, 16banks 4GB, 16banks

able to handle multiple parallel memory requests. The degree
of parallelism supported by the shared memory subsystem—
the caches and main memory—is called Memory-Level Paral-
lelism (MLP) [5].

A. Non-blocking caches and MSHRs
At the cache-level, non-blocking caches are used to handle

multiple simultaneous memory accesses. On a cache-miss,
the cache controller allocates a MSHR (miss status holding
register) to track the status of the ongoing request and the
entry is cleared when the corresponding memory request is
serviced from the lower-level memory hierarchy. For the last-
level cache (LLC), each cache-miss request is sent to the
main memory (DRAM). As such, the number of MSHRs
in the LLC effectively determines the maximum number of
outstanding memory requests directed to the DRAM controller.
It is important to note that MSHRs are typically shared among
the cores [7] and when there are no remaining MSHRs, further
accesses to the cache—both hits and misses—are prevented
until free MSHRs become available [1]. Because of this,
even if the cache space is partitioned among cores using
software cache partitioning mechanisms, in which each core
is guaranteed to have its dedicated cache space, accessing
the cache partition does not necessarily guarantee interference
freedom as we will demonstrate in Section V.

B. DRAM and memory controllers
At the DRAM-level, a DRAM chip is divided into multiple

banks, which can be accessed in parallel. As such, the number
of banks determines the parallelism available on DRAM.
To maximize the bank-level parallelism, DRAM controllers
typically use an interleaved mapping, which maps consecutive
physical addresses into different DRAM banks.

C. Cache and DRAM bank Partitioning
Cache partitioning has been studied extensively to provide

better isolation and efficiency. Page coloring is a well-known
software technique which partitions cache-sets among the
cores [11], [15], [9], [16]. Also, there are a variety of hard-
ware based partitioning mechanisms such as cache-way based
partitioning [13], which is supported in some commercial pro-
cessors [4]. More recently, several DRAM bank partitioning
methods, mostly based on page-coloring, have been proposed
to limit bank-level interference [17], [10], [14].

III. EVALUATION SETUP

In this paper, we use two COTS multicore platforms: an
Intel Xeon W3553 (Nehalem) based desktop machine and
an Odroid-XU+E single-board computer (SBC). The Odroid-
XU+E board equips a Samsung Exynos 5410 processor which
includes both four Cortex-A15 and four Cortex-A7 cores in a

1 s t a t i c i n t ∗ l i s t [MAX MLP] ;
2 s t a t i c i n t n e x t [MAX MLP] ;
3
4 long run ( long i t e r , i n t mlp )
5 {
6 long c n t = 0 ;
7 f o r ( l ong i = 0 ; i < i t e r ; i ++) {
8 s w i t c h ( mlp ) {
9 c a s e MAX MLP:

10 .
11 .
12 c a s e 2 :
13 n e x t [ 1 ] = l i s t [ 1 ] [ n e x t [ 1 ] ] ;
14 /∗ f a l l−t h r o u g h ∗ /
15 c a s e 1 :
16 n e x t [ 0 ] = l i s t [ 0 ] [ n e x t [ 0 ] ] ;
17 }
18 c n t += mlp ;
19 }
20 r e t u r n c n t ;
21 }

Fig. 1: MLP micro-benchmark. Adopted from [3].

big-LITTLE [6] configuration. Thus, we use the Odroid-XU+E
platform for both Cortex-A15 and Cortex-A7 experiments.
Table I shows the basic characteristics the three platform
configurations we used in our experiments. We run Linux 3.6.0
on the Intel Xeon platform and Linux 3.4.98 on the Odroid-
XU+E platform; both kernels were patched with PALLOC [17]
to be able to partition the shared LLC at runtime. When cache-
partitioning is applied, the shared LLC is evenly partitioned
among the four cores (i.e., each core gets 1/4 of the LLC
space).

IV. UNDERSTANDING MEMORY-LEVEL PARALLELISM

In this section, we identify memory-level parallelism (MLP)
of the three multicore platforms using an experimental method
described in [3].

In the following, we first briefly describe the method
for better understanding. The method uses a pointer-chasing
micro-benchmark shown in Figure 1. The benchmark traverses
a number of linked-lists. Each linked-list is randomly shuffled
over a memory chunk of twice the size of the LLC. Hence,
accessing each entry is likely to cause a cache-miss. Due to
data-dependency, only one cache-miss can be generated for
each linked list. In an out-of-order core, multiple lists can be
accessed at a time, as it can tolerate up to a certain number
of outstanding cache-misses. Therefore, by controlling the
number of lists (determined by mlp parameter in Figure 1)
and measuring the performance of the benchmark, we can
determine how many outstanding misses one core can generate
at a time, which we call local MLP. We also varied the number
of benchmark instances from one to four and measure the
aggregate performance to investigate the parallelism of the
entire shared memory hierarchy, which we call global MLP.

Figure 2 shows the results. Let us first focus on single
instance results. For Cortex-A7, increasing the number of lists
(X-axis) does not have any performance improvement. This
is because Cortex-A7 is in-order architecture in which only
one outstanding request can be made at a time. On the other
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Fig. 2: Aggregate memory bandwidth as a function of MLP/benchmark.

TABLE II: Local and global MLP

Cortex-A7 Cortex-A15 Nehalem
local MLP 1 6 10

global MLP 4 11 16

hand, for Cortex-A15, the performance improves up to six lists
and then saturates. This suggests that the Cortex-A15’s local
MLP is six. In case of Nehalem, performance improves up
to ten concurrent lists, suggesting its local MLP is ten. As
we increase the number of benchmark instances, the point of
saturation become shorter in both Cortex-A15 and Nehalem.
When four instances are used in Cortex-A15, the aggregate
performance saturates at three. This suggests that the global
MLP of Cortex-A15 is close to 12; according to [2], the LLC
can support up to 11 outstanding cache-misses (global MLP
of 11). Note that the global MLP can be limited by either of
the two factors: the size of MSHRs in the shared LLC or the
number of DRAM banks. In the case of Cortex-A15, the limit
is likely determined by the number of MSHRs of the LLC (11),
because the number of banks is bigger than that (16). In the
case of Nehalem, on the other hand, the performance saturates
when the global MLP is about 16, which is likely determined
by the number of banks, rather than the number of MSHRs;
according to [7], the Nehalem architecture supports up to 32
outstanding cache-misses. Table II shows the identified local
and global MLP of the the three platforms we tested.

V. UNDERSTANDING CACHE INTERFERENCE

In this section, we investigate performance impacts of
cache-level interference on COTS multicore platforms.

While most previous research on shared cache has focused
on unwanted cache-line evictions that can be solved by cache
partitioning, little attention has been paid to the problem
of shared MSHRs in non-blocking caches, which also can
cause interference. As we will see later in this section, cache
partitioning does not necessary provide isolation even when
the application’s working-set fits entirely in a dedicated cache
partition, due to contention in the shared MSHRs.

To find out worst-case interference, we use various combina-
tions of two micro-benchmarks: Latency and Bandwidth [18].
Latency is a pointer chasing synthetic benchmark, which
accesses a randomly shuffled single linked list. Due to data
dependency, Latency can only generate one outstanding re-
quest at a time. Bandwidth is another synthetic benchmark,

TABLE III: Workloads for cache-interference experiments.

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 BwRead(LLC) BwRead(DRAM)
Exp. 3 BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) BwWrite(DRAM)
Exp. 5 BwRead(LLC) BwWrite(DRAM)
Exp. 6 BwRead(LLC) BwWrite(LLC)

which sequentially reads or writes a big array; we henceforth
refer BwRead as Bandwidth with read accesses and BwWrite
as the one with write accesses. Unlike Latency, Bandwidth can
generate multiple parallel memory requests on an out-of-order
core as it has no data dependency.

Table III shows the workload combinations we used.
Note that the texts with parentheses—(LLC) and (DRAM)—
indicate working-set sizes of the respective benchmark. In case
of (LLC), the working size is configured to be smaller than
1/4 of the shared LLC size, but bigger than the size of the last
core-private cache. 1 As such, in case of (LLC), all memory
accesses are LLC hits in both cache partitioned and non-
partitioned cases. In case of (DRAM), the working-set size
is the twice the size of the LLC so that all memory accesses
result in LLC misses.

In all experiments, we first run the subject task on Core0
and collect its solo execution time. We then co-schedule an
increasing number of co-runners on the other cores (Core1-3)
and measure the response times of the subject task. We repeat
the experiment on the three test platforms with and without
cache partitioning.

A. Exp. 1: Latency(LLC) vs. BwRead(DRAM)

In the first experiment, we use the Latency benchmark as a
subject and the BwRead benchmark as co-runners. Recall that
BwRead has no data dependency and therefore can generate
multiple outstanding memory requests on an out-of-order pro-
cessing core (i.e., ARM Cortex-A15 and Intel Nehalem core).
Figure 3 shows the results. When cache-partitioning is not
applied, shared, the response times of the Latency benchmark
are increased dramatically in all three platforms—up to 6.7X
in Cortex-A7, 10.4X in Cortex-A15, and 27.7X in Nehalem.
This is because cache-lines of the Latency benchmark are

1The the last core-private cache is L1 for ARM Cortex-A7 and Cortex-A15
while it is L2 for Intel Nehalem.
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Fig. 3: [Exp.1] Slowdown of Latency(LLC) with BwRead(DRAM) co-runners.
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Fig. 4: [Exp.2] Slowdown of BwRead(LLC) with BwRead(DRAM) co-runners.
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Fig. 5: [Exp.3] Slowdown of BwRead(LLC) with BwRead(LLC) co-runners.

evicted by the co-running BwRead benchmark instances. If
not the co-runners, those cache-lines would never have been
evicted. On the other hand, applying cache-partitioning is
shown to be effective in preventing such cache-line evictions
hence providing performance isolation, especially in Cortex-
A7 and Intel Nehalem platforms. In the Cortex-A15 platform,
however, the response time is still increased by up to 3.9X
even after partitioning the cache. This is an unexpectedly high
degree of interference considering the fact that the cache-lines
of the subject benchmark, Latency, are not evicted by the co-
runners as a result of cache partitioning.

B. Exp. 2: BwRead(LLC) vs. BwRead(DRAM)

To further investigate this phenomenon, the next experiment
uses the BwRead benchmark for both the subject task and the
co-runners. Therefore, both the subject and co-runners now
generate multiple outstanding memory requests to the shared
memory subsystem in out-of-order architectures. Figure 4
shows the results. Note that while the behavior of Cortex-

A7 is similar to the previous experiment, the behaviors of
Cortex-A15 and Nehalem are considerably different. In the
Nehalem platform, in particular, the performance isolation
benefit of cache partitioning is completely eliminated as
the subject benchmark suffers from the similar degree of
slowdowns regardless of cache-partitioning. In other words,
the results suggest that cache-partitioning does not necessary
provide expected performance isolation benefits in out-of-
order architectures. We initially suspected the cause of this
phenomenon is likely the bandwidth competition at the shared
cache, similar to the DRAM bandwidth contention [17]. The
following experiment, however, shows it is not the case.

C. Exp. 3: BwRead(LLC) vs. BwRead(LLC)

In this experiment, we again use the BwRead benchmark
for both the subject and the co-runners but we reduced the
working-set size of the co-runners to (LLC) so that they all
can fit in the LLC. If the LLC bandwidth contention is the
problem, this experiment would cause even more slowdowns



to the subject benchmark as the co-runners now need more
LLC bandwidth. Figure 5, however, does not support this
hypothesis. On the contrary, the observed slowdowns in both
Cortex-A15 and Nehalem are much less, compared to the
previous experiment in which co-runners’ memory accesses
are cache misses and therefore use less cache bandwidth.

MSHR contention: To understand this phenomenon, we
first need to understand how non-blocking caches processes
cache accesses from the cores. As described in Section II,
MSHRs are used to allow multiple outstanding cache-misses.
If all MSHRs are in use, however, the cores can no longer
access the cache until a free MSHR becomes available. Be-
cause servicing memory requests from DRAM takes much
longer than doing it from the LLC, cache-miss requests occupy
MSHR entries longer. This causes a shortage of MSHRs,
which will in turn stall additional memory requests even when
they are cache hits.

D. Exp. 4,5,6: Impact of write accesses

In the next experiments, we further validate the problem
of MSHR contention by using the BwWrite benchmark as
co-runners. BwWrite updates a large array and therefore
generates a line-fill (read) and a write-back (write) for each
memory access. The additional write-back requests add more
pressure in DRAM and therefore delay the processing of line-
fill requests, which in turn further exacerbate the shortage
of MSHRs. Figure 6, Figure 7, and Figure 8 show results.
As expected, the subject tasks generally suffer even more
slowdowns due to the additional write-back memory traffic.

E. Summary

Figure 9 show the maximum observed slowdowns in all
experiments. When the LLC is partitioned, we observed up to
14.2X slowdown on Cortex-A15, 7.9X slowdown on Nehalem,
and 2.1X slowdown on Cortex-A7. When the LLC is not
partitioned, we observed up to 26.3X slowdown on Cortex-
A15, 103.7X slowdown on Nehalem, and 6.8X slowdown on
Cortex-A7.

In summary, while cache space competition (i.e., cache-
line evictions) is certainly an important source of interference,
eliminating the space competition through cache-partitioning
does not necessary provide ideal isolation in COTS multicore
platforms due to the characteristics of non-blocking caches.
Through a series of experiments, we demonstrated that the
MSHR competition can also cause significant interference,
especially in out-of-order cores.

VI. CONCLUSION

Many prior works focus on cache partitioning to ensure
predictable cache performance. In this paper, we showed that
cache partitioning does not necessarily provide predictable
cache performance in modern COTS multicore platforms that
use non-blocking caches to exploit memory-level-parallelism
(MLP). We quantified the degree of MLP on three COTS
multicore platforms and performed a set of experiments that
are specially designed to expose worst-case interference in
accessing the shared LLC among the cores.

The results showed that while cache-partitioning help reduce
interference, it can still suffer significant interference—up to
an order of magnitude slowdown—even when the task under
consideration accesses its own dedicated cache partition (i.e.,
all cache-hits). This is because there are other important shared
resources, particularly MSHRs, which need to be managed in
order to provide better isolation on COTS multicore platforms.
We plan to address the issue as our future work.
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Fig. 6: [Exp.4] Slowdown of Latency(LLC) with BwWrite(DRAM) co-runners.
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Fig. 7: [Exp.5] Slowdown of BwRead(LLC) with BwWrite(DRAM) co-runners.
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Fig. 8: [Exp.6] Slowdown of BwRead(LLC) with BwWrite(LLC) co-runners.
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Fig. 9: Maximum observed slowdowns in all experiments.
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