

SAMSUNG Tech. Conference

1. INTRODUCTION
Context switching is the series of procedures to switch

the control of CPU from current process to a certain
process. While the context switching, the operating system
saves the context of current process and restores the
context of the next process which is decided by some
certain scheduling policy.

The context switching time of an operating system
which supports the virtual address space, vary to the
algorithms of cache of the architecture. Cache architecture
can be split by the addressing scheme as virtual cache and
physical cache.[1] The virtual cache stores the location of a
certain context with virtual address and the physical cache
stores with physical address. The access time for the
virtual cache could be better for the simplicity of
comparison with the context of cache which needs no
address conversion. However, for context switching, the
whole context of the virtual cache must be flushed and
invalidated because of the meaningless after the switching.
For example, ARM9 architecture has virtual address based
cache and after the context switching the whole memory
access makes cache miss at every each first access time
which makes heavy load.

The uClinux [2] is designed for MMU-less architectures
at first. On uClinux, one singular address space is shared
by the whole processes which had its own virtual address
space while on Linux. It makes difficult to support
memory protection and vast address space but the load for
context switching and communication can be much
smaller while supporting the whole compatibility with
Linux API except for fork() which is replaced by vfork() in
uClinux.

In this paper, we analyzed the virtual addressing cache
architecture of the ARM9 which is mostly used platform
for embedded systems, and compared the expense of time

of context switching for uClinux and Linux on the same
platform.

The cache and TLB architecture is described at the
chapter 2 and the implementation issues for uClinux and
Linux is described at the chapter 3. The benchmark
environment and the program are described at the chapter
4 and the benchmark result is described at the chapter 5.
The previous works summarized at the chapter 6.

2. STRUCTURAL ANALYSIS
The structure of the cache and TLB (Translation

Look-aside Buffer) of the MMU based ARM processor is
as Fig.1. [8]

ARM architecture is designed as the harvard
architecture. CPU outputs the virtual address(VA) and if
the matching data is in the I(instruction) or D(data) cache
return the context by cache-hit. If it is not in the cache, the
TLB is used for matching the VA with the physical
address(PA) and the cache-line is filled from the memory.

CPU

TLB

I-Cache

D-Cache

VA

Memory

PA

Perm

Data

 Fig. 1. The Cache and TLB architecture diagram of ARM processor.

Context Switching and IPC Performance Comparison between

uClinux and Linux on the ARM9 based Processor

Hyok-Sung Choi, Hee-Chul Yun
{hyok.choi, heechul.yun}@samsung.com

Software Platform Lab, Digital Media R&D Center, Samsung Electronics

Abstract

uClinux is a derivation of Linux kernel intended for MMU-less processors. It provides a single shared address space for all
processes while the Linux kernel provides a separate virtual address space for each process using hardware MMU (memory
management unit). In this paper, we implemented Linux and uClinux kernels on the same ARM9 platform and compared the
performance. The ARM9 processor features virtually indexed caches and a TLB without address space tag. Therefore Linux should
flush entire cache and TLB on each context switch which is very costly. uClinux, however, contents of caches and a TLB are valid
even after context- switch because the same address space is shared among all processes. We observed an order of magnitude
reduction of the context switching overheads on uClinux. As a result, IPC (Inter Process Communication) performance is also
better on uClinux.

Keyword

Embedded OS, Linux, uClinux, benchmark, MMU, cache, performance, context switching, IPC, ARM

Fig.2 shows the detailed cache structure of ARM9
processor [6][7]. The “Index” part from the 32bits virtual
address which is made by CPU used for indexing of the
“Tag” table and if the indexed entry’s tag information
matches the tag information from the virtual address, the
data from cache-line is accessed. In the Fig.2, the cache
index and the tag itself are based on the virtual address.
Thus, while process context switching time, the whole
current cache context and TLB is invalidated if it is set by
the WT(Write-Through) cache policy, even need to be
flushed into the real memory if WB(Write-Back) cache
policy is used.

For flushing the cache, about 1k ~ 18k CPU cycle is
needed depend on the cache size and the side operations
which is needed to fill-up the cache-line and TLB takes up
to about 54k CPU cycle. For 200MHz ARM9 processor, it
is about 270µs time, [3] and is a heavy burden for many
real-time applications which needs under several tens of µs
response delay.

Tag Index Word Byte

1
2
3
4

. TAG

.

.

.

.
128

.

=

Hit

=

Read data

1 2 3 24 5 6 7 8

01245111232

 Fig. 2. The detailed cache architecture diagram based on virtual address.
(ARM926EJ-S)

3. IMPLEMENTATION

uClinux is the modified Linux kernel for architectures
which has a MPU(Memory Protection Unit) only or even
no hardware memory management unit. From 2.0.x to
2.4.x, it is independently designed and developed from
Linux kernel. However, from Linux 2.6.0 beta test
versions, from the m68knommu architecture, it is merged
into the mainstream Linux kernel and separation from
conventional Linux kernel and uClinux is not valid.
Although uClinux supports the singular addressing space
for kernel and application processes, except for fork() and
memory remapping only, the whole Linux API is fully
compatible and used for many of real-world embedded
system development for architectures which has no MMU
or even it has, if the single space addressing has
advantages.

uClinux is available for architecture which has MPU or
even MMU. The ARM MMU supports both page-mapping
for 1KB, 4KB, 64KB size and section-mapping for 1MB
size. Linux uses 4KB paging-mapping for memory

management. For uClinux, 1MB section-mapping can be
used for simple virtual to physical mapped single address
space. To say again, D and I-cache operation and mapping
core of MMU still work but paging mapping for uClinux.

In this paper, ARM926EJ-S core based Samsung
S3C24A0 processor reference platform is used for Linux
and uClinux 2.6.7. [4]

4. EXPERIMENTAL SETUP

4.1 The benchmark programs
lmbench[5] is the well-known benchmark program for

performance testing over UNIX related operating systems.
In this paper, “lat_ctx,” “lat_fifo” and “bw_fifo” is used
with some modifications.

The “lat_ctx” is for measuring the requirement time for
context switching. Creating “N” processes and series of
“N” pipes, it constructs “pipe-ring” which links all the
processes. Each process accesses its own “k” KB
independent memory and “token” is passed through the
next pipe to the neighbor processes, which makes a series
of synchronized context switching and measure the cycle
delay time.

The “lat_fifo” is for measuring the requirement time for
send and receive a token between 2 processes.

The “bw_pipe” is for measuring the bandwidth of
“pipe” to send and receive through it.

To be the exactly same code, while the benchmark, we
made modifications on fork and pipe to be vfork and
name-pipe (FIFO).

Master Child1 Child2

FIFO 0 FIFO 1 FIFO 2

write

read

write

read

writeread

 Fig. 3. The FIFO structure of the modified “lat_ctx”

Fig. 3 shows the modified FIFO structure for the

“lat_ctx.” The parent processes creates FIFO which is
sorted with the process numbers(PID). When the child
processes are created by the vfork, the child processes
open the neighbor FIFOs to be ready for the
communication. Each of the all the child processes are
blocked when it try to read the “n-1” FIFO and to be
“sleep” state waiting for the write of the FIFO. If all the
child processes are ready for read the FIFOs, the parent
process writes a token to the first FIFO. It makes “wake”
the first child process and the context switching is occurred,
and the process writes the token to the next child process,
and so on. This procedure makes the chain reaction to be
context switched in series. If the last child process get the

HyokSung Choi , YunHee Chul
CPU control and write to the last FIFO, the blocked parent
process who was waiting for the input of the last FIFO is
awaken and completes one cycle of the “pipe-ring.”

5. EVALUATION

5.1 The benchmark system
The S3C24A0 process which is used for the benchmark

test is based on the ARM926EJ-S core and has 16KB
D-Cache and 16KB I-Cache separately. The TLB has the
capacity to store 64 entries simultaneously, and the I and D
entries are not separated and the all of the caches and TLB
is based on the virtual address.

The benchmark test is done on the same S3C24A0
platform and the same release version of kernel (2.6.7) for
uClinux and Linux. And the benchmark program which is
described at the Chapter 4 is used.

5.2 The benchmark result
The results of “lat_fifo” and “bw_pipe” are shown in the

Table 1, which reflects the delayed time and the
bandwidths of the FIFO.

The result shows that uClinux has 5 times and 2 times
better performance than Linux on the delayed time and the
bandwidths. This is from the cache operation of the Linux
kernel which invalidates and flushes the whole caches for
the context switching. In other hand, uClinux shares the
one address space for all the processes include the kernel
itself, and get the benefit of cache efficiency.

In other words, the difference of the IPC (Inter-Process
Communication) performance can make a big performance
improvement on the uClinux system applications which
needs frequent processes communication.

TABLE 1
THE RESULTS OF THE IPC PERFORMANCE OF LINUX AND UCLINUX

 Linux uClinux Ratio

lat_fifo(µs) 160.64 31.74 5.06

bw_pipe(MB/s) 12.58 25.55 2.03
lat_fifo measures the delayed time of FIFO, smaller number is better.

bw_pipe measures the bandwidth of FIFO, bigger number is better.

The context switching delayed time is showed in the Fig.

4. The context switching time of uClinux and Linux varies
from its own data access size (0KB, 1KB, 16KB) and the
number of processes. When the access data size is 0KB,
uClinux switches 4.5 times faster for 16 processes and 9.7
times for 2 processes.

For all cases of Linux settings, the context switching
time is almost flat independently with the increase of
number of processes. It shows the almost fixed cache miss
burden which comes from the invalidation of the whole
caches while the context switching. uClinux shows much
smaller delayed time for context switching while the
number of processes are small and increase depend on the
number of processes. This comes from the decrease of the
cache hit ratio of I-cache and D-cache, when the number of
processes is increased. Especially when the process own
data access size grows up to 16KB, the context switching
time for both of uClinux and Linux almost same which

comes from the hardware cache size of S3C24A0 which
has 16KB I and D caches and the benefit from cache set
off.

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16

Processes
C

o
n
te

xt
 s

w
it
c
h
 t

im
e
[
u
s
] uc. -s 16k

uc. -s 1k

uc. -s 0k

Fig. 4. The context switching time measured by “lat_ctx.” is shown. Each

process has its own 0KB, 1KB or 16KB data access contents and the
number of processes varies. The dot over the line “x” represents the value

of Linux and “o” for the value of uClinux.

The magnified graph for own access data size 0KB is

shown at Fig. 5. For Linux, all the caches are invalidated
and flushed whenever switching the context and the
cache-line is filled from the beginning. Thus, almost fixed
cache-miss time load is needed irrelative to the number of
processes.

In uClinux case, the possibility of cache hit occurrence
is much stronger. However the delayed time increase while
the number of process increase which makes increase the
possibility of cache-miss because of the limited hardware
cache capacity.

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16

Processes

C
o

n
te

xt
 s

w
it
c
h
 t

im
e
[
u
s
]

uclinux linux

Fig. 5. The context switching time measured by “lat_ctx.” Each process

has no its own data access storages. (size = 0KB)
The total gage R&R study on the benchmark system

shows 0.25% contribution of VarComp and 5.03%SV.

6. RELATED WORK
Although we are not aware of any previous systematic

study of the uClinux and Linux performance, many of
extensions to operating systems performance improvement
was introduced include real-time, sharing domain and
overall performance.

In particular, many different real-time scheduling
algorithms introduced and have been implemented in the
FreeBSD, Linux, or Solaris kernels and so on.[11] And
some of different approaches for reducing the OS latency
is used by systems, such as RTLinux, RTAI, and KURT
and so on.

Another focus on the kernel performance has been on
the overall performance optimization issues on general
purpose or overall throughput which could be an issue on
enterprise servers. [9][10]

The FASS(Fast Address-Space Switching for ARM
Linux Kernels) is one of the a few studies on embedded
systems.[3] The project aims to utilize some of the features
of the Memory Management Unit in the StrongARM
architecture to improve the performance of context
switches under ARM Linux Kernel, although it is known
to be unstable as it should be: TLB sharing does not always
work. It is based on using domain tags as address-space
identifiers and delaying cache flushes until a clash of
mappings is detected. And they implemented TLB entries
for shared pages even though the TLBs of the ARM are
quite small and a potential bottleneck.

7. CONCLUSION
In this paper, we compared the context switching time

and IPC performance of uClinux and Linux on the same
hardware platform with ARM9 core, which is the mostly
used Linux embedded system platform.

With the series of benchmark programs, uClinux
showed much improved performance of context switching
delay and IPC than Linux. This comes from the virtual
address usage for cache architecture and the virtual address
space support of Linux kernel which needs invalidation of
the whole caches which makes a fixed amount of
cache-miss load whenever switching the contexts of
processes. uClinux which supports singular address space
boosts the efficiency of cache even if context switching
occurs and dramatically reduced the required delay.
uClinux showed much better performance on the IPC
performance also.

The uClinux will show significant benefits on a sort of
applications which needs high context switching rates and
significant sharing like IPC as the time critical embedded
systems does.

REFERENCES
[1] Steve Furber. “ARM System-on-Chip Architecture”.

Addison-Wesley, 2000.
[2] uClinux developer forum.

http://www.ucdot.org/
[3] Adam Wiggins et el. “Implementations of Fast

Address-Space Switching and TLB Sharing on the
StrongARM Processor”, in the Proceedings of the 8th
Australia-Pacific Computer Systems Architecture
Conference, Aizu-Wakmatsu City, Japan, September
2003.

[4] HyokSung Choi. “uClinux/ARM 2.6 Project”
http://opensrc.sec.samsung.com/

[5] McVoy, L., Staelin, C. “lmbench: Portable tools for
performance analysis”. In: Proceedings of the 1996
USENIX Technical Conference, San Diego, CA, U.S.
(2996)

[6] Samsung S3C24A0 Product Datasheet.
http://www.samsung.com/Products/Semiconductor/S
ystemLSI/MobileSolutions/MobileASSP/MobileCom
puting/S3C24A0/S3C24A0.htm

[7] ARM926EJ-S Technical Reference Manual.
http://www.arm.com/pdfs/DDI0198D_926_TRM.pdf

[8] ARM Architecture Reference Manual. ARM LTD.
[9] Duc Vianney, Sandra Johnson, Bill Hartner. “Linux

Kernel Performance Measurement and Evaluation”
LinuxWorld / San Francisco. Aug. 2002.

[10] Sandra K. Johnson, William H. Hartner, William C.
Brantley. “Improving Linux kernel performance and
scalability”. LTC. Jan 2003

[11] Luca Abeni, Ashvin Goel, Charles Krasic, Jim Snow,
Jonathan Walpole. “A Measurement-Based Analysis
of the Real-Time Performance of Linux”.
Proceedings of the 8th IEEE Real-Time and
Embedded Technology and Applications Symposium,
2002.

