
Denial-of-Service Attacks on Shared Resources in
Intel’s Integrated CPU-GPU Platforms

Michael Bechtel, Heechul Yun
University of Kansas, USA.

{mbechtel, heechul.yun}@ku.edu

Abstract—In this paper, we study the effectiveness of denial-of-
service (DoS) attacks on Intel’s heterogeneous multicore system-
on-chips with integrated GPU (iGPU) in which the last level cache
(LLC) and the main memory subsystem are shared between
the multicore CPU and the iGPU. Using two Intel processors
with iGPU, we evaluate four different DoS attacks, three CPU
based and one iGPU based, and show they can induce very
high degree of shared resource contention and thus dramatically
slowdown the victim’s execution time. We further evaluate the
effectiveness of Intel’s recent hardware based shared resource
isolation mechanisms, namely Intel Cache Allocation Technology
(CAT) and Graphics Technology Class of Service (GT COS),
which provide shared LLC partitioning capability for the CPU
cores and the iGPU, respectively, in defending against these DoS
attacks. Using both synthetic and real-world benchmarks, we
find that hardware based LLC partitioning mechanisms does
provide spatial LLC space isolation but does not necessarily
provide temporal isolation.

Index Terms—Denial-of-Service Attack, Multicore, Integrated
GPU, Way-based Cache Partitioning

I. INTRODUCTION

Heterogeneous system-on-a-chip processors (SoCs), which
integrate multiple CPU cores, GPU and other accelerators
into a single chip, are increasingly adopted in all areas of
computing. This includes many intelligent cyber-physical sys-
tems applications such as self-driving cars, drones, and smart
manufacturing, which require high performance for timely
processing of real-time data while meeting size, weight and
power constraints [13], [16].

However, contention in shared hardware resources among
the heterogeneous computing elements remains a major chal-
lenge as it can significantly impact task execution timing.
Furthermore, such contention can be intentionally induced by
malicious actors to perform Denial-of-Service (DoS) attacks
that specifically target these shared resources. For example,
it has been shown that DoS attacks targeting various internal
structures in a shared LLC can dramatically impact the perfor-
mance of real-time tasks on several contemporary embedded
multicore platforms [6], [37].

The problem of shared resource contention in multicore is
well-known and extensively studied in the real-time embedded
systems community, but still with limited success, especially
on complex and powerful processors. The problem is only
exacerbated on heterogeneous systems as more and varied
computing resources compete for the shared resources. Recent
studies on NVIDIA’s Jetson embedded computing platforms,

which have ARM cores and an integrated GPU, show that they
can suffer significant timing variations due to contention in the
shared DRAM among the CPU cores and the integrated GPU
(iGPU) [7], [8].

As the demand for computing increases, thanks in part
due to the emergence of AI/ML workloads, powerful x86
architecture-based heterogeneous SoCs are increasingly con-
sidered in many embedded applications. For example, Tesla’s
Model X and Model S are known to use AMD’s embedded
platform with integrated graphics (Zen CPU core plus Vega
iGPU) to drive display and graphics of the vehicles [9].
However, powerful x86 processors from both Intel and AMD
are known to be quite complex and difficult to analyze their
temporal behaviors in part because they tend to have a large
amount of shared hardware resources. For instance, most Intel
processors for consumer and embedded markets are already
equipped with an integrated GPU, which shares not only a
common DRAM memory subsystem but also a large shared
last-level cache (LLC) with the CPU.

In this paper, we study the feasibility and effectiveness of
micro-architectural DoS attacks on two Intel computing plat-
forms with integrated GPUs, a Coffee Lake micro-architecture
based consumer grade desktop and a Tiger Lake micro-
architecture based Intel UP3 computing platform. Note that
the Tiger Lake platform is specially tailored for embedded
applications and has several hardware features that are poten-
tially beneficial for embedded/real-time applications. Namely,
it has Intel Cache Allocation Technology (CAT) and Graphics
Technology Class of Service (GT COS) [15], which support
hardware assisted way-based cache partitioning capabilities for
both CPU and iGPU, respectively. In both platforms, CPU
and the iGPU share not only the main memory (DRAM)
but also a common shared LLC, as in all other Intel CPUs
with an iGPU [17]. On these platforms, we intend to answer
the following questions: (1) How effective are existing DoS
attacks? (2) Can the iGPU be used as an effective DoS attack
vector? (3) Are Intel’s CAT and GT COS mechanisms effective
in preventing such DoS attacks?

This paper makes the following contributions:

• We provide extensive evaluation results on the effec-
tiveness of various DoS attacks on two different Intel
processor architectures with integrated GPUs, namely a
Coffee Lake-based desktop processor and a newer Tiger978-1-6654-0627-7/22/$31.00 ©2022 IEEE

Lake-based embedded application processor 1.
• We find that DoS attacks are generally much more effec-

tive on the Coffee Lake processor (up to 70X slowdown),
while they are also effective, to a less degree, on the
newer Tiger Lake processor (up to 12X slowdown).

• We find that Intel’s hardware assisted LLC way parti-
tioning techniques, namely CAT and GT COS, prevent
unwanted LLC evictions but do not always translate to
improved temporal isolation, especially in the case of
iGPU-based DoS attacks, suggesting the limitations of
these technologies. To the best of our knowledge, we are
the first to evaluate the effectiveness of these features on
a TigerLake embedded application processor.

The rest of this paper is organized as follows: Section II
provides necessary background information on Intel iGPUs
and RDT. Section III details the threat model we assume for
this paper. Section IV describes the DoS attacks we used
in this paper. Section V provides evaluation results of the
effectiveness of DoS attacks on two Intel platforms and the
isolation effects of Intel CAT and GT COS technologies. We
discuss related work in SectionVI and conclude in Section VII.

II. BACKGROUND

A. Integrated Graphic Processing Unit

In this paper, we focus on Intel’s integrated GPU (iGPU)
based computing platforms. The most basic computational
node in Intel iGPUs is the Execution Unit (EU), which is
capable of executing seven concurrent threads. Each thread is
composed of 128 general-purpose registers and two ALUs that
can each execute up to eight 16-bit or four 32-bit operations.
EUs are grouped into sets of SubSlices, each of which have
64KB of Shared Local Memory (SLM) that can be used to
improve memory access times. Collectively, all subslices form
a single Slice and share an L3 cache [17]. Figure 1 shows a
high level depiction of the Slice architecture found in a Tiger
Lake’s Iris Xe Graphics iGPU. It is composed of 6 sub-slices
and a total of 96 EUs, which enable a total of up to 5,376
concurrent 32-bit floating point operations. Intel iGPUs share
access to a common shared LLC2 with the CPU, so misses at
the GPU’s private L3 cache generate accesses to the LLC [19].
It is important to note that this differs from Nvidia’s iGPUs,
which share the DRAM with the CPU but not the LLC. In this
paper, we are interested in studying the interference impacts
of the LLC sharing between the CPU and the GPU.

B. Resource Directory Technology

To address the problem of shared resource contention, Intel
has released a number of tools and technologies, collectively
known as Intel Resource Directory Technology (RDT) [18],
to monitor and control LLC space and DRAM bandwidth
resources. For LLC management, the Cache Monitoring Tool
(CMT) supports per-core LLC usage monitoring capability,

1We provide our evaluation framework as open-source at
https://github.com/mbechtel2/GTCOS-DoS.

2The shared LLC is level 4 from the GPU’s perspective while it is level 3
from the CPU’s perspective

EU EU

SubSlice

L3 Cache

Inst. Cache

Slice

Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

SubSlice

Inst. Cache Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

SubSlice

Inst. Cache Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

SubSlice

Inst. Cache Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

SubSlice

Inst. Cache Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

SubSlice

Inst. Cache Thread Dispatch

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

Fig. 1: High level overview of the Slice in a Tiger Lake Iris
Xe Graphics iGPU. Adapted from [19].

and the Cache Allocation Technology (CAT) provides a way-
based LLC partitioning capability among the CPU cores. For
DRAM bandwidth management, Memory Bandwidth Mon-
itoring (MBM) and Memory Bandwidth Allocation (MBA)
support per-core DRAM bandwidth monitoring and throttling
capabilities, respectively. More recently, Intel introduced a
tool for controlling the LLC ways that their iGPUs can
access, called Graphics Technology Class of Service (GT
COS) [15], which works identically to the aforementioned
CAT technology but for the iGPU—that is, it can limit the
LLC ways used by the iGPU to reduce its impact to the CPU.

At a lower level, the RDT technologies all operate in a
similar fashion. Rather than directly assign resource partitions
directly to cores, Intel uses an additional layer of abstrac-
tion known as a Class-of-Service (CLOS) to which cores or
groups of cores can be assigned. The resource partitions are
then assigned on a per-CLOS basis. This allocation is done
by assigning bitmasks to per-CLOS model-specific registers
(MSRs). For example, the user can modify CAT specific MSRs
to dictate which LLC ways the cores in that CLOS can access.
Note that this same process applies to GT COS. In this work,
we primarily focus on shared last-level cache management
techniques, namely CAT and GT COS, and investigate whether
these technologies are effective at mitigating interference on
shared memory resources.

III. THREAT MODEL

We assume that a victim task and one or more attacker tasks
are co-located on a heterogeneous multicore platform, which
consists of multiple CPU cores and an integrated GPU. The
CPU cores and the integrated GPU may have private per-core
caches but they all share a common last-level cache (LLC)
and the main memory (DRAM). We assume that the platform
can provide hardware-level LLC way-partitioning (e.g., Intel
CAT [18]), and that the runtime environment can partition
CPU, iGPU and the LLC ways to minimize inference by
ensuring these resources are not shared between the victim
and the attacker tasks. We allow the attacker(s) to only execute
unprivileged code on CPU cores and/or the iGPU if they are
not used by the victim task. In this setting, the goal of the

attacker is to increase the victim’s execution time, whether it
runs on the CPU or iGPU, by running DoS attacks.

IV. DENIAL-OF-SERVICE ATTACKS ON SHARED MEMORY
RESOURCES

In this section, we present the denial-of-service (DoS)
attacks we used in this work to stress the shared memory
resources in a heterogeneous multicore platform.

A. CPU-based DoS Attacks

In this work, we use three CPU-based DoS attackers. They
are specially engineered to stress shared hardware resources
in the memory hierarchy in order to induce maximum delays
to the victim task that shares the platform with the attackers.

1 for (i = 0; i<mem size; i += LINE SIZE)
2 {
3 ptr[i] = 0xff;
4 }

(a) BwWrite

1 static int* list[MAX MLP];
2 static int next[MAX MLP];
3
4 for (int64 t i = 0; i < iter; i++) {
5 switch (mlp) {
6 case MAX MLP:
7 .
8 .
9 case 2:

10 list[1][next[1]+1] = 0xff;
11 next[1] = list[1][next[1]];
12 /* fall−through */
13 case 1:
14 list[0][next[0]+1] = 0xff;
15 next[0] = list[0][next[0]];
16 }
17 }

(b) MlpWrite

Fig. 2: CPU DoS attacks: BwWrite and MlpWrite perform
sequential and random memory updates, respectively.

The first two attackers are based on the bandwidth and
latency-mlp from the IsolBench suite [37] and perform sequen-
tial and random memory accesses, respectively, with adjustable
working set size (WSS) to fit in any level of the memory
hierarchy. Furthermore, we configure them to only perform
memory write operations, which are known to cause longer
delays than reads [5], [6], [37]. We henceforth refer to these
attackers as BwWrite and MlpWrite, respectively. Figure 2
shows the code listings for both attacks. Note that we choose
the latency-mlp benchmark as it can better stress the memory
hierarchy than the latency benchmark, which only performs a
single memory access at a time. This is because latency-mlp
can be configured to access multiple linked lists concurrently,
while latency is limited to a single linked list. In addition,
we use a MAX MLP value of 12, which we found using the
same method from [37].

1 #define bit(addr,x) ((addr >> (x)) & 0x1)
2 int paddr to bank(unsigned long addr)
3 {
4 return ((bit(addr, 6)ˆbit(addr,13))<<3|
5 (bit(addr,14)ˆbit(addr,17))<<2|
6 (bit(addr,15)ˆbit(addr,18))<<1|
7 (bit(addr,16)ˆbit(addr,19)));
8 }

Fig. 3: DRAM bank mapping function for MemWrite, which
performs bank-aware random memory updates.

The third CPU-based attacker is a memory-aware (DRAM
bank-aware) DoS attack from [5]. This attack is identical to the
MlpWrite attacker above, except that it only accesses a subset
of array entries whose physical addresses are mapped to the
same memory bank, thus creating bank contention. As such,
we refer to this attacker as MemWrite. To achieve this attack,
we first reverse engineer our Intel platforms’ memory address
mappings using the state-of-the-art DRAMA tool [11], [29]
and use them to select the array entries that will be accessed.
Figure 3 shows the code we use to convert a given physical
address to a DRAM bank on the Coffee Lake platform we use
in our evaluations.

B. GPU-based DoS Attacks

Since Intel iGPUs share the LLC and the DRAM with
the CPU, we create a simple GPU kernel, which we call
GpuWrite, using the OpenCL framework, that performs par-
allelized memset operations to stress both LLC and DRAM.
We found the memset operation to be the most effective GPU
kernel in generating contention on our tested platforms, which
is consistent with the finding in [8]. Figure 4 shows the code
listing of the GpuWrite kernel.

1 kernel void write(global TYPE * restrict a)
2 {
3 const size t i = get global id(0);
4 a[i] = i;
5 }

Fig. 4: GPU DoS attack: GpuWrite

V. EVALUATION

In this section, we investigate the impact of DoS attacks on
two Intel platforms where the CPU and iGPU share and can
simultaneously access the LLC.

A. Hardware Platforms

For our experiments, we use two Intel-based heterogeneous
hardware platforms: a PC equipped with an Intel i7-8700K
(Coffee Lake) processor and an Intel UP3 embedded platform
equipped with an Intel i7-1185G7E (Tiger Lake) processor.
The i7-8700K includes six physical cores and twelve hardware
threads, while the i7-1185G7E includes four physical cores
and eight hardware threads. On both processors, each core has
private L1 and L2 caches and all cores share an L3 cache that

is also the LLC. Both processors equip iGPUs and the CPU
and iGPU on both platforms share the LLC and the main
memory subsystem. On the software side, both systems run
Ubuntu 20.04 as their operating system. However, the Coffee
Lake system runs Linux v5.13 and the Tiger Lake UP3 runs
Linux v5.8.

Platform Coffee Lake PC Tiger Lake UP3

CPU

Intel i7-8700K Intel i7-1175G7E
6 cores / 12 threads 4 cores / 8 threads

3.7GHz base 2.8GHz base
4.7GHz boost 4.4GHz boost
32KB(I/D) L1 48KB(I)/32KB(D) L1

256KB L2 (4-way) 1280KB L2 (16-way)
(Shared) 12MB L3 (16-way) 12MB L3 (12-way)

iGPU

Intel UHD 630 Intel Iris Xe
24 EUs 96 EUs

350MHz base 350MHz base
1.2GHz boost 1.35GHz boost

Memory 8GB (1 DIMM) 8GB (1 DIMM)
1 rank, 16 banks 1 rank, 16 banks

Bank functions 6⊕13, 14⊕17, N/A15⊕18, 16⊕19

RDT Not enabled L3 CAT
GT COS

TABLE I: Intel Platform System Specs

The Tiger Lake UP3 platform supports Intel RDT tech-
nologies, namely CAT and GT COS, which provide hard-
ware supported LLC way-partitioning between the CPU cores
(CAT) as well as between the CPU and iGPU (GT COS) (see
Section II-B). Unfortunately, however, the MSR registers used
for controlling GT COS allocations are not publicly available.
As such, we reverse engineer these MSRs (see Appendix A
for details). Note that the LLC on the TigerLake platform has
12 ways with each way being 1MB in size. As such, both CAT
and GT COS MSRs can be assigned anywhere from 1 to 12
ways.

We disable turbo boost and simultaneous multithreading
(SMT) and always pin tasks, both attackers and the victim,
on dedicated cores to improve the repeatably of the results.

From this point, we refer to the platforms as Coffee Lake
and Tiger Lake, respectively, based on their CPU architectures.
Additional platform specifications can be found in Table I.

B. Effect of DoS Attacks

In the first set of experiments, we evaluate the effect of DoS
attacks on a CPU victim task. The basic experiment setup
is as follows: We run a victim task alone on CPU Core 0,
first in isolation and then together with DoS attackers on all
other available cores on the CPU or the iGPU. In each case,
we measure the performance of the victim and calculate the
slowdown ratios caused by the attackers.

1) Synthetic CPU victim: In this experiment, we use band-
width from the IsoBench suite as a synthetic victim task. We
configure the task to perform read accesses, vary its WSS from
2MB to 64MB, and use HugePage allocation to reduce LLC set
conflicts. We henceforce refer to the task as BwRead. For the
DoS attackers, we use all three CPU-based attacks (BwWrite,
MlpWrite, MemWrite) and the GPU-based attack (GpuWrite)

described in Section IV on the Coffee Lake platform while we
omit MemWrite on Tiger Lake as we were unable to determine
its full memory address mapping scheme.

Figure 5 shows the results for the BwRead victim. On
Coffee Lake, when the victim is 4MB or smaller, the GPU-
based attack, GpuWrite, is the most effective, achieving up
to ∼42X slowdown at 4MB WSS. On the other hand, the
memory-aware attack, MemWrite, is the most effective when
the victim’s WSS is 8MB or larger, up to ∼71X slowdown
at 16MB WSS, which is due to the additional impacts of
memory bank contention (e.g. prolonged LLC blocking times).
Interestingly, all CPU based attacks—BwWrite, MlpWrite, and
MemWrite—are ineffective when the victim’s WSS is less
than 4MB, in which cases the victim experiences close to
zero LLC miss rates, despite the fact that the LLC is fully
shared by both the victim and the DoS attacker. On the other
hand, the GPU attacker, GpuWrite, is able to effectively evict
the victim’s cache-lines, regardless of the victim’s WSS, as
evidenced by the victim’s high LLC miss rates, around ∼90%,
in Figure 5b. These results suggest that the GPU’s memory
accesses may be prioritized over the CPU’s memory accesses
on Coffee Lake.

On Tiger Lake, on the other hand, the first general observa-
tion is that all DoS attacks are relatively less effective than on
Coffee Lake. Again, when the victim’s WSS is small, less than
4MB, GpuWrite is more effective as on Coffee Lake, although
the degree of which is much smaller. As the victim’s WSS
increases, however, the CPU based attacks, both BwWrite
and MlpWrite, become more effective as they cause up to
∼12.1X slowdown, while the GPU-based attack, GpuWrite,
only causes ∼4.1X in the worst case.

Lastly, on both platforms, we find that attacker’s memory
patterns, sequential or random, do not have significant impact
to the victim. We also varied the victim’s memory access
pattern and found marginal differences in terms of observed
slowdowns and LLC miss rates on both platforms. This is
somewhat surprising as prior work on interference in NVIDIA
Jetson platforms [7] and memory performance attacks [24]
suggested significant impact depending on the memory access
patterns. However, we did not observe such noticeable differ-
ences on the two Intel platforms we tested and thus omit the
results due to space limitation.

2) SPEC2017 victim on CPU: We next evaluate the effec-
tiveness of the DoS attacks on 23 real-world benchmarks from
the SPEC2017 suite [35]. The basic experiment setup is the
same as the prior experiment, except that we use one of the
SPEC2017 benchmark as the victim.

Figure 6 shows the results. Note that the benchmarks are
organized in ascending order of their memory bandwidth
usages measured in isolation on their evaluated platforms. On
both platforms, the slowdowns experienced by the SPEC2017
benchmarks generally increase along with their DRAM band-
width usage, up to ∼32.3X against the roms benchmark on
Coffee Lake and ∼7.6X against the omnetpp benchmark on
Tiger Lake. This is likely because DRAM contention also
becomes a bottleneck, in addition to LLC contention, so there

 0

 10

 20

 30

 40

 50

 60

 70

2048 4096 8192 16384 32768 65536

Sl
ow

do
w

n

Victim WSS (KB)

Solo
BwWrite(DRAM)
MlpWrite(DRAM)

MemWrite
GpuWrite

(a) Coffee Lake - Slowdown

 0

 20

 40

 60

 80

 100

2048 4096 8192 16384 32768 65536

LL
C

M
is

s
R
at

e
(%

)

Victim WSS (KB)

Solo
BwWrite(DRAM)
MlpWrite(DRAM)

MemWrite
GpuWrite

(b) Coffee Lake - LLC Miss Rate

 0

 2

 4

 6

 8

 10

 12

2048 4096 8192 16384 32768 65536

Sl
ow

do
w

n

Victim WSS (KB)

Solo
BwWrite(DRAM)

MlpWrite(DRAM)
GpuWrite

(c) Tiger Lake - Slowdown

 0

 20

 40

 60

 80

 100

2048 4096 8192 16384 32768 65536

LL
C

M
is

s
R
at

e
(%

)

Victim WSS (KB)

Solo
BwWrite(DRAM)

MlpWrite(DRAM)
GpuWrite

(d) Tiger Lake - LLC Miss Rate

Fig. 5: Impact of DoS attackers on the execution time and LLC miss rate of BwRead victim tasks. Sizes left of the vertical
line are LLC-fitting and the sizes to the right are DRAM-fitting.

are more avenues for the attackers to generate slowdown.
We still see slowdown for the LLC sensitive benchmarks
on both platforms, but to a far lesser degree. On Coffee
Lake, the memory-aware DoS attack, MemWrite, is highly
effective at delaying the victims, despite the memory-aware
attackers consuming less memory bandwidth than memory-
unaware attackers, suggesting that contention is not necessarily
in overall DRAM bandwidth only. Instead, the memory-aware
attack is more effective because it targets a specific DRAM
bank, which causes excessive bank conflicts and thus slows
down all memory performance. The GPU attacker, GpuWrite,
is also very effective, especially compared to the memory-
unaware CPU DoS attacks, with a geometric mean slowdown
of 5X across all tested SPEC2017 victims. On Tiger Lake,
on the other hand, the memory-unaware CPU attackers are
generally more effective than the GPU attacker, which is
expected from the prior synthetic experiment results.

3) Parboil victim on iGPU: To this point, all of our victims
have run on the CPU. However, victim kernels run on the
iGPU may also be susceptible to DoS attacks. To investigate
this, we employ 11 real-world GPU benchmarks from the
Parboil suite [36] and perform the same DoS experiments
as before. In this case, though, we only use CPU-based DoS
attacks as the GPU-based attack cannot run at the same time
as the Parboil kernels.

Figure 7 shows the Parboil benchmark results on Coffee
Lake and Tiger Lake. In general, we observe that GPU kernel
victims are less susceptible to DoS attacks from the CPU on
both platforms. However, we find that memory-aware CPU
DoS attacks are still noticeably effective on Coffee Lake. In
the worst case, we see ∼10X and ∼2.6X slowdown against the
lbm benchmark on Coffee Lake and Tiger Lake, respectively.
From this, we find that DoS attacks do have the potential to
negatively affect real-world applications on the iGPU.

C. Isolation Effect of Intel CAT/GT COS

In this section, we seek to determine if hardware-based LLC
partitioning on Intel platforms, namely CAT and GT COS
technologies (see Section II-B) can help mitigate the impacts
of DoS attacks. To do this, we first rerun the BwRead victim
tests on the Tiger Lake platform, but with CAT and GT COS
partitioning enabled. For the partition allocations, we assign
the victim core to its own CLOS (CLOS 0) and the attacker
cores to another CLOS (CLOS 1). We then assign all but one
of the LLC ways to the victim and the last way to all attackers,
including the GPU-based attacker. In other words, we give the
victim sole access to 11MB (11 ways) of the LLC while the
attackers collectively only have 1MB.

Figure 8 shows the results with partitioning enabled. As
expected, when the victim fits in their given LLC space we
see virtually no LLC misses. In particular, we highlight the

 0

 5

 10

 15

 20

 25

 30

 35

exchange2

povray

imagick

leela
nab

x264
deepsjeng

namd
blender

parest

perlbench

cam4
xalancbmk

xz wrf
cactuBSSN

gcc
mcf

omnetpp

roms
lbm fotonik3d

bwaves

geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)
MlpWrite(DRAM)

MemWrite
GpuWrite

(a) Coffee Lake

 0

 1

 2

 3

 4

 5

 6

 7

 8

povray

exchange2

imagick

leela
nab

x264
namd

deepsjeng

blender

perlbench

cam4
xz wrf

cactuBSSN

xalancbmk

parest

gcc
omnetpp

bwaves

mcf
roms

lbm fotonik3d

geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)
MlpWrite(DRAM)
GpuWrite

(b) Tiger Lake

Fig. 6: Impact of DoS attacks on SPEC2017.

8MB victim case as we see a notable reduction in its LLC
miss rate with partitioning enabled. To be more specific, the
8MB victim goes from a ∼41% worst case miss rate without
partitioning down to 0% with partitioning. From this, we
find that both CAT and GT COS work as intended as they
do provide spatial isolation for the LLC. Furthermore, we
find that this also translates to improved temporal isolation
against CPU-based attackers. For example, the 8MB victim
goes from ∼12.1X slowdown against the MlpWrite attackers
down to 9% with partitioning. On the other hand, we find that
LLC partitioning does not provide effective temporal isolation
against GPU-based DoS attacks as the victim still sees ∼3X
slowdown regardless. From this, we find that (1) slowdowns
from CPU-based attacks are primarily due to LLC evictions,
and (2) the slowdown from GPU-based attacks are not due
to LLC evictions and are more likely due to other factors
(e.g. LLC blocking [6], [37]), thus rendering LLC partitioning
ineffective.

We also test how well LLC space partitioning can protect
the performance of the SPEC2017 and Parboil benchmarks.
We run the same experiments as in Figures 6b and 7b, but
with CAT and GT COS enabled. Note that for the Parboil
benchmarks, we change the GT COS allocation such that the
iGPU, and hence the victim kernel, has access to 11 LLC ways
separate from the attackers’ single way.

Figure 9 shows the SPEC2017 benchmarks’ performance

 0

 2

 4

 6

 8

 10

bfs cutcp
histo

lbm mri-gridding

mri-q
sad sgemm

spmv
stencil

tpacf
geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)

MlpWrite(DRAM)
MemWrite

(a) Coffee Lake

 0

 0.5

 1

 1.5

 2

 2.5

 3

bfs cutcp
histo

lbm mri-gridding

mri-q
sad sgemm

spmv
stencil

tpacf
geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)

MlpWrite(DRAM)

(b) Tiger Lake

Fig. 7: Impact of DoS attacks on Parboil kernel performance.

on Tiger Lake. As we expected, enabling LLC partitioning
did help to improve the performance of the victim tasks but
did not provide complete temporal isolation. Collectively, the
benchmarks went from a worst case geometric mean of ∼2.6X
slowdown without partitioning down to ∼2X. However, we
note that the performance improvements were mostly seen
when the attackers were CPU-based. Similar to the synthetic
victims, LLC partitioning had little impact against GPU-based
attackers as the benchmarks only improved from a geometric
mean of 50% slowdown down to 43% slowdown.

Figure 10 then shows the results for the Parboil benchmarks.
We again see that LLC partitioning helps to improve temporal
performance through spatial isolation, but does not completely
protect real-time performance. On average, the benchmarks go
from a worst case geometric mean of 90% without partitioning
to 49% with partitioning.

From this, we find that additional mechanisms should be
used in conjunction with LLC partitioning in order to better
guarantee system predictability.

VI. RELATED WORK

A. GPUs in Real-Time Systems

Because GPUs offer significant performance improvements
for highly data-parallel applications, much research effort has
been focused on the predictable use of GPUs for real-time
applications. Unlike CPU tasks, GPU kernels are often non-
preemptable or incur high preemption overhead, which can

 0

 1

 2

 3

 4

 5

 6

 7

 8

2048 4096 8192 16384 32768 65536

Sl
ow

do
w

n

Victim WSS (KB)

Solo
BwWrite(DRAM)
MlpWrite(DRAM)
GpuWrite

(a) Slowdown

 0

 20

 40

 60

 80

 100

2048 4096 8192 16384 32768 65536

LL
C

M
is

s
R
at

e
(%

)

Victim WSS (KB)

Solo
BwWrite(DRAM)
MlpWrite(DRAM)
GpuWrite

(b) LLC Miss Rates

Fig. 8: Impact of Intel CAT/GT COS way-based partitioning
in protecting a BwRead CPU victim. (The sizes left to the bar
are LLC-fitting and the sizes to the right are DRAM-fitting.)

 0

 1

 2

 3

 4

 5

 6

 7

 8

povray

exchange2

imagick

leela
nab

x264
namd

deepsjeng

blender

perlbench

cam4
xz wrf

cactuBSSN

xalancbmk

parest

gcc
omnetpp

bwaves

mcf
roms

lbm fotonik3d

geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)
MlpWrite(DRAM)
GpuWrite

Fig. 9: Impact of Intel CAT/GT COS way-based partitioning
in protecting SPEC2017 CPU benchmarks.

cause undesired priority inversions. To address this, there
have been many efforts to account for GPU execution in
WCET estimations and real-time scheduling decisions. These
include kernel slicing [38], [42], [46], spatial and temporal
partitioning [2], [32]. Much of these efforts have focused on
NVIDIA’s discrete GPUs due to their popularity and maturity,
though some recent works also investigated the use of AMD’s
discrete GPUs for real-time systems [26], [27].

Recently, some researchers have investigated the use of

 0

 0.5

 1

 1.5

 2

 2.5

 3

bfs cutcp
histo

lbm mri-gridding

mri-q
sad sgemm

spmv
stencil

tpacf
geomean

Sl
ow

do
w

n

Benchmark

Solo
BwWrite(DRAM)

MlpWrite(DRAM)

Fig. 10: Impact of Intel CAT/GT COS way-based partitioning
in protecting Parboil iGPU benchmarks.

integrated CPU-GPU platforms for real-time applications [1],
[4], [7], [8], [25], [28], [41]. Compared to discrete GPUs,
integrated GPUs are more challenging to provide real-time
guarantees because they share the main memory and other re-
sources with the CPUs. Closely related to this work, Cavicchi-
oli et al. evaluated the impacts of shared resource contention
on Nvidia Jetson embedded platforms and an Intel Skylake
micro-architecture based PC [7], [8]. However, their work only
used synthetic tasks and did not evaluate the impact of shared
resource isolation techniques. In contrast, our work evaluated
the impact of real-world applications and the effect (and
the limitations) of Intel’s recent hardware assisted isolation
mechanisms.

B. Denial-of-Service Attacks

Many denial-of-service attacks on shared resources have
been studied on multicore systems. Moscibroda et al. demon-
strated the feasibility of DoS attacks on DRAM [24]. These
attacks exploit the characteristics of memory controller’s FR-
FCFS scheduling algorithm [30] that favors sequential access
over random ones. More recently, DoS attacks that target
internal hardware structures of the shared LLC to induce cache
blocking have been proposed [5], [6], [37]. Leveraging the
attacks from [6], Iorga et al. presented a statistical testing
method to evaluate shared resource interference on a number
of embedded multicore platforms [20].

Even without malicious attackers, normal applications can
cause interference with one another. Therefore, there has been
much work in the real-time community to provide stronger
isolation for shared LLC and DRAM on multicore systems.
Many researchers have proposed various software and hard-
ware mechanisms and policies to manage these resources [10],
[21]–[23], [31], [33], [34], [40], [43], [45], [47]. Common
software based techniques include page coloring based cache
or DRAM bank partitioning [21]–[23], [43], [44] and perfor-
mance counter based bandwidth throttling [45]. The move for
greater shared resource management has also been seen in
industry, such as Intel’s introduction of the CAT and CMT
technologies [14]. ARM also introduced a similar technology
called Memory System Resource Partitioning and Monitoring

(MPAM) [3] in addition to their existing hardware QoS mech-
anisms [33]. Recent works leveraged these hardware features
to provide stronger real-time guarantees. Xu et al. proposed a
joint shared cache space and memory bandwidth partitioning
technique to provide stronger isolation in multicore [39], [40]
utilizing Intel CAT and MemGuard [45]. Gifford et al. have
since extended this technique to introduce task phases and
perform phase-aware resource allocations [12]. Serrano-Cases
et al. and Zini et al. have explored the use of ARM QoS
mechanism in Xilinx MPSoCs to regulate the contention at
the system bus level [33], [47].

Our work is different from prior DoS studies in that we
focus on recent Intel processors with integrated GPU to
explore the feasibility of iGPU based DoS attacks, and evaluate
the effectiveness of Intel’s new hardware feature that supports
cache way partitioning for iGPU.

VII. CONCLUSION

In this paper, we investigated the potential for DoS attacks
on Intel CPUs with integrated GPU (iGPU) in which not
only the DRAM but also the LLC are shared between the
CPU and the iGPU. From extensive experiments, we find
that both computational nodes could effectively impact the
performance of the other for both synthetic and real-world
representative victim tasks. We then evaluated the CAT and GT
COS technologies introduced by Intel for providing CPU and
iGPU LLC way partitioning. In doing so, we find that both are
able to improve spatial isolation and reduce LLC evictions but
are unable to provide temporal isolation in all cases, suggesting
the presence of additional sources of interference that delay
the execution of the affected victims. As future work, we plan
to investigate more sophisticated iGPU-based DoS attacks that
take advantage of memory bank mapping and other available
system information. We also plan to investigate hardware-
based bandwidth throttling mechanisms for Intel iGPUs.

ACKNOWLEDGEMENTS

This research is supported in part by NSF grant CNS-
1815959, CPS-2038923 and NSA Science of Security initia-
tive contract no. H98230-18-D-0009. The Tiger Lake UP3
platform used for this research was donated by the Intel
Corporation. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the NSF,
NSA or Intel.

REFERENCES

[1] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. GPU
Scheduling on the NVIDIA TX2: Hidden Details Revealed. In RTSS,
2017.

[2] T. Amert, Z. Tong, S. Voronov, J. Bakita, F. D. Smith, and J. H. Ander-
son. Timewall: Enabling Time Partitioning for Real-Time Multicore+
Accelerator Platforms. In RTSS, 2021.

[3] ARM. ARM Memory System Resource Partitioning and Monitor-
ing (MPAM), for Armv8-A. https://developer.arm.com/documentation/
ddi0598/latest.

[4] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu. Co-Optimizing
Performance and Memory Footprint Via Integrated CPU/GPU Memory
Management, an Implementation on Autonomous Driving Platform. In
RTAS, 2020.

[5] M. Bechtel and H. Yun. Memory-Aware Denial-of-Service Attacks on
Shared Cache in Multicore Real-Time Systems. ToC, 2021.

[6] M. G. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention. In RTAS, 2019.

[7] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and M. Bertogna.
Contending Memory in Heterogeneous SoCs: Evolution in NVIDIA
Tegra Embedded Platforms. In RTCSA, 2020.

[8] R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory Interference
Characterization Between CPU Cores and Integrated GPUs in Mixed-
Criticality Platforms. In ETFA, 2017.

[9] I. Cutress. AMD Expanding Into Tesla Model 3
and Model Y. https://www.anandtech.com/show/17198/
amd-expanding-into-tesla-model-3-and-model-y.

[10] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. Deterministic
Memory Abstraction and Supporting Multicore System Architecture. In
ECRTS, 2018.

[11] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi. TRRespass: Exploiting the Many Sides
of Target Row Refresh. In IEEE SP, 2020.

[12] R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen. DNA: Dynamic
Resource Allocation for Soft Real-Time Multicore Systems. In RTAS,
2021.

[13] A. Hamann. Industrial Challenges: Moving From Classical to High
Performance Real-Time Systems. In WATERS, July 2018.

[14] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer. Cache QoS: From Concept to Reality in the Intel® Xeon®
Processor E5-2600 v3 Product Family. In HPCA, 2016.

[15] Intel.
[16] Intel. Hard Iron Meets Artificial Intelligence. https:

//www.intel.com/content/www/us/en/customer-spotlight/stories/
audi-automated-factory.html.

[17] Intel. Intel® Processors with Integrated Graphics. https:
//www.intel.com/content/www/us/en/develop/documentation/
oneapi-gpu-optimization-guide/top/gen-arch.html.

[18] Intel. Intel® Resource Director Technology (Intel® RDT) Framework.
https://www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html.

[19] Intel. Software Optimization for Intel® GPUs (NEW). https://www.
intel.com/content/www/us/en/develop/documentation/vtune-cookbook/
top/methodologies/software-optimization-for-intel-gpus.html.

[20] D. Iorga, T. Sorensen, J. Wickerson, and A. F. Donaldson. Slow and
Steady: Measuring and Tuning Multicore Interference. In RTAS, 2020.

[21] H. Kim, A. Kandhalu, and R. Rajkumar. A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems. In ECRTS, 2013.

[22] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith. At-
tacking the One-Out-of-M Multicore Problem by Combining Hardware
Management with Mixed-Criticality Provisioning. Real-Time Systems,
2017.

[23] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-Time Cache Management Framework for Multi-core
Architectures. In RTAS, 2013.

[24] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial
of Memory Service in Multi-Core Systems. In USENIX Security
Symposium, 2007.

[25] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna. Dissecting the CUDA Scheduling Hierarchy: a Perfor-
mance and Predictability Perspective. In RTAS, 2020.

[26] N. Otterness and J. H. Anderson. AMD GPUs as an Alternative to
NVIDIA for Supporting Real-Time Workloads. In ECRTS, 2020.

[27] N. Otterness and J. H. Anderson. Exploring AMD GPU Scheduling
Details by Experimenting With “Worst Practices”. In RTNS, 2021.

[28] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang. An Evaluation of the NVIDIA TX1 for
Supporting Real-Time Computer-Vision Workloads. In RTAS, 2017.

[29] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX
Security Symposium, 2016.

[30] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memory
Access Scheduling. In ACM SIGARCH Computer Architecture News,
2000.

[31] S. Roozkhosh and R. Mancuso. The Potential of Programmable Logic
in the Middle: Cache Bleaching. In RTAS, 2020.

https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest
https://www.anandtech.com/show/17198/amd-expanding-into-tesla-model-3-and-model-y
https://www.anandtech.com/show/17198/amd-expanding-into-tesla-model-3-and-model-y
https://www.intel.com/content/www/us/en/customer-spotlight/stories/audi-automated-factory.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/audi-automated-factory.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/audi-automated-factory.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/gen-arch.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/gen-arch.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/gen-arch.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/software-optimization-for-intel-gpus.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/software-optimization-for-intel-gpus.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/software-optimization-for-intel-gpus.html

[32] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-Temporal GPU
Management for Real-Time Tasks. In RTCSA, 2019.

[33] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla.
Leveraging Hardware QoS to Control Contention in the Xilinx Zynq
UltraScale+ MPSoC. In ECRTS, 2021.

[34] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: a System-
wide Framework for Memory Bandwidth Profiling and Management. In
RTSS, 2020.

[35] SPEC CPU2017. https://www.spec.org/cpu2017.
[36] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. D. Liu, and W.-m. W. Hwu. Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Computing.
Center for Reliable and High-Performance Computing, 2012.

[37] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In RTAS, 2016.

[38] Y. Xiang and H. Kim. Pipelined Data-Parallel CPU/GPU Scheduling
for Multi-DNN Real-Time Inference. In RTSS, 2019.

[39] M. Xu, R. Gifford, and L. T. X. Phan. Holistic Multi-Resource
Allocation for Multicore Real-Time Virtualization. In DAC, 2019.

[40] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee.
Holistic Resource Allocation for Multicore Real-Time Systems. In
RTAS, 2019.

[41] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D.
Smith. Avoiding Pitfalls When Using NVIDIA GPUs for Real-Time
Tasks in Autonomous Systems. In ECRTS, 2018.

[42] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson,
and J.-M. Frahm. Re-thinking CNN Frameworks for Time-Sensitive
Autonomous-Driving Applications: Addressing an Industrial Challenge.
In RTAS, 2019.

[43] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a Dynamic Cache
Partitioning System Using Page Coloring. In PACT, 2014.

[44] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. In RTAS, 2014.

[45] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In RTAS, 2013.

[46] H. Zhou, S. Bateni, and C. Liu. Sˆ3DNN: Supervised Streaming and
Scheduling for GPU-Accelerated Real-Time DNN Workloads. In RTAS,
2018.

[47] M. Zini, G. Cicero, D. Casini, and A. Biondi. Profiling and Controlling
I/O-Related Memory Contention in COTS Heterogeneous Platforms.
Software: Practice and Experience, 2021.

APPENDIX

A. Reverse Engineering the GT COS Model Specific Register

As previously discussed, the GT COS technology operates
in a manner similar to Intel’s standard CAT solution. The GT
COS in Tiger Lake is controlled by four MSR registers, which
support four logical class-of-service (CLOS) partitions for
integrated GPU. Since the addresses of GT COS MSR registers
are not publicly available, we reverse engineer the MSRs as
follows. First, we learned that the values of all four GT COS
MSRs are changed to preset values when enabling or disabling
relevant settings in the BIOS, according to [15]. With these
known sets of values, we then searched all available MSR
registers that match with the known values. In this way, we
determined that MSR registers 0x18b0-0x18b3 are associated
with GT COS’s CLOS 0-3 respectively.

To validate these MSRs, we performed an experiment
using a BwRead(LLC) victim task on the CPU alongside a
GpuWrite(DRAM) attacker on the iGPU with and without
LLC partitioning. For GT COS, we set the victim to have a
WSS of 9.5MB and assign 11MB of the LLC (i.e., 11 ways) to
the victim’s partition, while the remaining 1MB being given to
the iGPU’s LLC partition using the identified GT COS MSRs.

 0

 5

 10

 15

 20

No part. GTCOS

LL
C

M
is

s
R
at

e
(%

)

solo
+1 attack

Fig. 11: Impact of GTCOS partitioning on the LLC miss rate
of a BwRead victim task.

Figure 11 shows the LLC miss rates of the victim tasks
in both scenarios. Without partitioning, we do see a notable
increase in the victim’s miss rate, ∼10%, indicating that the
iGPU on Tiger Lake can evict LLC lines when the victim task
is sufficiently large. When we enable GT COS partitioning, we
see a meaningful drop in the LLC miss rate, down to ∼0.7%.
From the results, we conclude that (1) the MSRs found in
our reverse engineering are valid, and (2) GT-COS works as
intended in providing spatial isolation between the CPU and
the iGPU in accessing the shared LLC.

https://www.spec.org/cpu2017

