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Abstract—Commercial-Off-The-Shelf (COTS) DRAM con-
trollers are optimized for high memory throughput, but they
do not provide predictable timing among memory requests from
different cores in multicore systems. Therefore, memory requests
from a critical real-time task on one core can be substantially
delayed by memory requests from non-real-time tasks on the
other cores.

In this work, we propose a DRAM controller design, called
MEDUSA, to provide predictable memory performance in mul-
ticore based real-time systems. MEDUSA can provide high time
predictability when needed for real-time tasks but also strive
to provide high average performance for non-real-time tasks
through a close collaboration between the OS and the DRAM
controller. In our approach, the OS partially partitions DRAM
banks into two groups: reserved banks and shared banks. The
reserved banks are exclusive to each core to provide predictable
timing while the shared banks are shared by all cores to efficiently
utilize the resources. MEDUSA has two separate queues for
read and write requests, and it prioritizes reads over writes.
In processing read requests, MEDUSA employs a two-level
scheduling algorithm that prioritizes the memory requests to
the reserved banks in a Round Robin fashion to provide strong
timing predictability. In processing write requests, MEDUSA
largely relies on the FR-FCFS for high throughput but makes an
immediate switch to read upon arrival of read requests to the
reserved banks.

We implemented MEDUSA in a Gem5 full-system simulator
and a Linux kernel and performed experiments using a set of
synthetic and SPEC2006 benchmarks to analyze the performance
impact of MEDUSA on both real-time and non-real-time tasks.
The results show that MEDUSA achieves up to 95% better worst-
case performance for real-time tasks while achieving up to 31%
throughput improvement for non-real-time tasks.

I. INTRODUCTION

In a modern Commercial-Off-The-Shelf (COTS) multicore
architecture, a single core often generates multiple concurrent
memory requests (due to techniques such as non-blocking
cache and out-of-order execution) to hide long off-chip mem-
ory access latency. This, together with the increased number
of cores, puts high bandwidth pressure on the main memory
subsystem. To meet the bandwidth demand, modern DRAM
chips are composed of multiple banks that can be accessed in
parallel. COTS DRAM controllers, then, employ a variety of
techniques to maximize memory performance.

Unfortunately, aforementioned COTS memory organization
and DRAM controller designs are poor at providing pre-
dictable timing in multicore systems for three main reasons.
First, each core can access any bank at any time. If, for
example, all cores try to access the same bank at the same time,
they will suffer a very long delay due to the loss of bank-level
parallelism. Second, DRAM controllers have internal buffers
to temporarily store memory requests until they are serviced.
Because DRAM is generally much slower than CPU, a request
can suffer considerable queueing delay in the buffers. The
problem is further aggravated as memory schedulers typically
re-order the requests in the buffers to maximize memory
throughput. Third, DRAM controllers are unaware of the
importance of each memory request in scheduling the memory
requests. As a result, a memory request from a high priority
task can be starved by the requests from the low priority tasks.

These are serious problems for critical embedded systems,
such as avionics systems [5], where predictable timing is
required. To provide predictable timing in accessing memory,
many predictable real-time DRAM controllers have been pro-
posed [19], [2], [26], [20], [7]. While these real-time DRAM
controller designs provide predictable memory timing, they
generally suffer much decreased average memory throughput.

In this work, we propose a new DRAM controller design,
called MEDUSA, which addresses the aforementioned prob-
lems through a close collaboration between the OS and the
DRAM controller. In our approach, DRAM banks are partially
partitioned in the sense that some banks are reserved to be
accessed exclusively by certain designated cores while the rest
of the banks are shared by all cores. The bank partitions are
determined by the OS and notified to the DRAM controller.
MEDUSA maintains two separate request queues, one for
reads and another for writes, and reads are prioritized over
writes as in most COTS memory controllers. In processing
reads, MEDUSA implements a two-level scheduling algorithm
that first prioritizes requests for the reserved banks over the
ones for the shared banks. Between the requests for the re-
served banks, MEDUSA uses a round-robin scheduling policy
to achieve high time predictability. The rest of the requests for
the shared banks are scheduled according to the standard FR-
FCFS algorithm to maximize throughput. In processing writes,
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Fig. 1: Normalized response times of a micro-benchmark (linked-list traversal) co-scheduled with memory intensive co-runners
on three different quad-core COTS platforms. In (a), all tasks access the same DRAM bank, while in (b), each task accesses
its own dedicated bank.

on the other hand, MEDUSA uses the standard FR-FCFS
algorithm regardless of whether the requests are targeting
reserved banks or shared banks as the writes are not in the
critical path of the program execution.

In our approach, real-time tasks can allocate memory from
the reserved banks to achieve predictable timing while non-
real-time tasks can allocate memory from the shared banks to
achieve high performance and high resource utilization.

We have implemented and evaluated MEDUSA in a Gem5
full system simulator [3] and a version of Linux kernel, which
uses PALLOC [27] to support OS-level DRAM bank partition-
ing, using a set of synthetic and SPEC2006 benchmarks. Our
results show that MEDUSA achieves up to 95% improvement
in the worst-case response time of real-time tasks while at the
same time achieving up to 31% throughput improvement of
non-real-time tasks.

II. MOTIVATION AND BACKGROUND

In this section, we first experimentally demonstrate the
significance of the memory interference problem on modern
COTS multicore systems. We then provide some necessary
background on DRAM based memory systems and discuss
the sources of the problem.

A. Memory interference problem

In this experiment, we use three representative COTS
multicore platforms—an ARM Cortex A15 based embedded
platform, Intel Nehalem and Haswell based desktop platforms.
The experiment setup is as follows: We measure the execution
times of a micro-benchmark, Latency (a simple linked list
traversal benchmark [30]), in the presence of memory intensive
Bandwidth benchmark (which updates a big array sequen-
tially) as co-runners; we varied the number of co-runners
from 0 to 3. Note that all tasks are single-threaded, each of
which is assigned to its own dedicated core. We assign the
highest real-time priority for the Latency benchmark using a

real-time scheduler (SCHED FIFO) in Linux. Also, both the
benchmarks are not cache-sensitive (their working-set sizes
are bigger than the size of LLC) and therefore the experiment
stresses on the impact of DRAM level contention.

In Figure 1(a), tasks are engineered so that all memory
accesses target the same DRAM bank partition (one DRAM
bank) 1 to simulate the worst-case. Note that this worst-case
scenario can happen in standard operating systems, as they do
not consider bank locations in allocating memory. As shown in
the figure, in such a scenario, the execution time increases are
surprisingly high—up to 8.0X in ARM Cortex A15, 33.5X in
Intel Nehalem, and 45.8X in Intel Haswell. This is much worse
than previously reported analytical and experimental studies
[22], [23], [13] which did not control DRAM bank allocations.

In Figure 1(b), on the other hand, tasks are engineered
to access their own dedicated DRAM bank. This eliminates
conflicts at the DRAM bank level, hence resulted in much
reduced increase in the execution time. This result vindicates
the need and effectiveness of resource partitioning techniques
[27], [17], [16], [25], [12], [15], [24] that have been actively
researched in recent years. However, it is also evident that
even after partitioning the resources, there is still a high
degree of interference (up to 8.8X slowdown). An important
observation is that the fastest processor (Haswell) suffers the
highest slowdown. This suggests that future high-performance
processors could show even worse timing predictability.

A DRAM chip is composed of multiple banks which can
be accessed in parallel. Each bank is organized as a two-
dimensional array of rows and columns. To access data, the
entire row containing the data must be copied into the row-
buffer of the bank, which is called activate. A subsequent
request to the same row is serviced from the row-buffer, which
is relatively fast. If, however, the request is not on the row-
buffer, the content of the row-buffer must be copied back to

1We use PALLOC [27] allocator to control DRAM bank location in
allocating memory pages at the Linux kernel level.



its original row, which is called precharge, before activating
a new row containing the data. Therefore, the memory access
latency to a bank can vary considerably depending on whether
the data is in the row-buffer, row-hit, or not, row-miss. When
a bank is shared by multiple tasks, they can evict each other’s
row-buffer and cause unpredictable additional delay depending
on the memory access history.

A memory (DRAM) controller sits between the last-level
cache (LLC) of the processor and the memory devices. It
translates the read and write memory requests into corre-
sponding DRAM commands while satisfying all timing con-
straints imposed by specific memory standards [11]. The major
components of a memory controller are request buffers—one
for reads and one for writes—and the scheduler. Reads are
prioritized over writes and both reads and writes are processed
in batches to amortize the data bus turnaround delay [6].
Switching between the read and write batches are determined
by a watermark policy [6]. If the read buffer is empty, the low
watermark value is used to determine when to drain the writes.
If the read buffer is not empty, however, the high watermark
value is used instead. In either case, once the controller
starts to drain the writes, at least a predefined number of
writes (minimum-writes-per-switch) must be drained before
switching back to the read batch.

In either read or write batches, the scheduler arbitrates the
requests in the respective queue to select the next request to
be served by the DRAM controller. Modern COTS DRAM
controllers typically use the FR-FCFS scheduling policy [21],
which prioritizes (1) row-hit requests over row-miss requests;
(2) older requests over younger requests. While FR-FCFS is
effective at maximizing memory throughput, it is unaware of
the importance (priority) of each individual memory request
and therefore can starve or delay urgent memory requests of
high priority real-time tasks due to the request reordering and
queueing delay [28].

These observations motivate us to develop a new DRAM
controller design MEDUSA, which will be detailed next.

III. MEDUSA

MEDUSA is a DRAM controller design that provides
high time predictability for real-time tasks and high average
performance for non-real-time tasks, all running in parallel
on different cores in a multicore system. This is achieved by
close collaboration between the OS and the memory controller
which will be detailed in the following subsections.

A. OS controlled DRAM bank partitioning

In MEDUSA, the OS reserves a small number of banks for
each core while it shares the rest of the banks for all cores.
For example, a quad-core system with an eight-bank DRAM
device can be partitioned as one reserved (private) bank for
each core and four shared banks for all cores. Using core-
private banks eliminates the possibility of bank conflicts from
unrelated tasks on different cores, and therefore is desirable to
achieve higher time predictability, even though it may suffer

Fig. 2: Two-level hierarchical memory scheduling algorithm

lower average performance due to the reduced bank-level par-
allelism. On the other hand, using shared banks can improve
average performance at the cost of lower predictability.

DRAM bank mapping information—reserved banks and
shared banks—is notified by the OS to the DRAM controller
via a hardware register. It is important to note that tasks on
each core can allocate memory from both reserved banks and
shared banks, depending on the tasks’ needs. Determining an
optimal bank assignment is out-of-scope of the paper. Here, we
assume that a system designer provides an appropriate bank
assignment for the given workloads.

Once a bank assignment is determined, the OS uses this
information in allocating memory. For example, memory pages
for real-time tasks may be allocated from the core-private
banks, while memory pages for non-real-time tasks may be
allocated from the shared banks. This can be done using a
DRAM bank-aware memory allocator such as PALLOC [27],
which exploits the memory management unit (MMU) of
modern processors.

Compared to hardware based bank partitioning ap-
proaches [26], [20] in which banks are statically partitioned
among the cores by hardware, MEDUSA’s OS-based approach
is more flexible and provides the same bank-partitioning ca-
pability to eliminate bank-conflicts. Also, with the OS virtual-
memory mechanism, data sharing between real-time and non-
real-time tasks is supported by mapping certain physical pages
(e.g., in reserved banks) to their respective virtual address
spaces. Of course, such sharing could incur additional delay
when the shared memory pages are accessed concurrently. In
this paper, however, we focus independent tasks which do not
share data with each other for the sake of analysis.

Note that our OS-based approach could increase overhead
in allocating memory pages, because additional check may
be needed to find right banks, but once the allocation is
performed, it doesn’t carry any additional overhead on the sub-
sequent memory accesses. A more detailed overhead analysis
on bank-aware allocation can be found in [27].

B. Request scheduling

As demonstrated in Section II, bank partitioning alone
does not guarantee predictable timing because the scheduling
algorithm in the memory controller plays a key role in de-
termining the latency of each memory request. For example,
the commonly used FR-FCFS scheduling algorithm prioritizes



Fig. 3: An example: Requests to reserved banks (Bank 1-2)
are prioritized over previously arrived requests to shared banks
(Bank 3-4). (Note: requests are numbered in the arrival time order.)

row-hit requests over row-miss requests. While it offers high
average throughput, it also can cause high, unpredictable delay
to important memory requests.

To address the problem, MEDUSA employs a two-level
scheduling algorithm in processing read requests (read batch).
The two-level scheduling algorithm works as follows: First, it
prioritizes memory requests for the reserved banks over the
ones for the shared banks. The arbitration among the memory
requests from the reserved banks is based on round-robin as
it provides more tightly bounded memory access latency [19].
Second, if there is no request for the reserved banks, it uses
the standard FR-FCFS algorithm to maximize throughput in
processing memory requests for the shared banks. Figure 2
shows the flowchart of the proposed algorithm. In essence, it
is a two-level hierarchical scheduler, similar to the two-level
CPU scheduler in Linux and other OSes.

When MEDUSA processes write requests (write batch),
however, it simply uses the standard FR-FCFS to arbitrate the
write requests as in standard COTS DRAM controllers. This
is because, unlike reads, writes are not in the critical path of
execution and the FR-FCFS offers high draining throughput.
However, MEDUSA differs from the COTS dram controllers
in switching between read and write batches. In a typical
COTS DRAM controller, a switch from a read batch to a
write batch occurs when the number of requests in the write
queue crosses a pre-defined threshold (high- or low-watermark
value). Then it processes at least a certain number of write
requests, which is referred as the minimum-writes-per-switch.
This characteristic of a modern memory controller is well-
suited for general purpose systems. However the minimum-
writes-per-switch requirement can cause additional delays for
memory requests for real-time tasks. Suppose, for example, a
new read request from a real-time task has arrived right after
switching to a write batch. Then, the read request must wait
until the write batch completes. It will be even worse if all the
write requests are row misses, as they take longer to process.

To minimize the delay caused by the minimum-write-
per-switch requirement, MEDUSA implements the following
mode switching rules: (1) if the memory bus is in a read batch
and there is at least one read request to the reserved banks

(i.e., requests from real-time tasks), MEDUSA doesn’t switch
to a write batch, even if the number of writes has crossed the
predefined high watermark level. (2) If the memory bus is in
a write batch and there is at least one read request, MEDUSA
switches from the write batch to a read batch immediately
after finishing the on-going write request. This would bound
the delay incurred to critical read of a real-time task by a
maximum of one write request.

C. Example

Figure 3 shows an example of our approach. In this example,
six requests, RD1-6 (numbered in their arrival order), are
initially in the read request queue. Note that Bank1 (Bank2)
is reserved for Core1 (Core2), while Bank 3 and 4 are shared
by all cores. Assuming all requests are row-hit requests, if
the standard FR-FCFS algorithm is used, the requests will be
processed in their arrival order—i.e., RD1, RD2, ..., RD6. In
MEDUSA, however, RD5 and RD6 will be prioritized because
they are targeting the core-reserved banks. Note that if there
are no memory requests for the reserved banks, our scheduler
uses FR-FCFS, as in existing COTS memory controllers.

D. Benefits

The benefits of our approach are three-fold: 1) Real-time
tasks can easily allocate memory from the reserved banks
(via the OS) to achieve highly predictable timing; 2) Non-
real-time tasks can still achieve high average performance
by allocating memory from the shared banks. Note that the
number of DRAM banks are typically significantly bigger than
the number of cores (e.g., 16 banks vs. 4 cores) and most
applications do not show performance improvement beyond a
certain number of banks [27], [16]; 3) Configuration is highly
flexible (via the OS at run-time) and each core can access
both reserved and shared banks. Compared to other hardware
based works [26], [20] that a core can only access its reserved
bank(s), our approach is more flexible and efficient.

IV. MEMORY ACCESS DELAY ANALYSIS

We now present the delay analysis of MEDUSA. In
MEDUSA, write memory requests are not in the critical path
of program execution (as in modern FR-FCFS based DRAM
controllers). Therefore, our focus is on read memory requests
from the real-time task under analysis, which are targeting
private DRAM banks. More specifically, we compute an upper
bound on the inter-bank interference delay of a read request of
the task under analysis. Note that the read request can suffer
inteference from (1) prior requests that have scheduled at time
t−1 on the shared banks and (2) concurrent requests that have
arrived at the same time t on the other core-private banks (i.e.,
requests from the other real-time tasks).

In MEDUSA, requests to private banks are prioritized over
shared banks. However, the last previous request that has
already scheduled on the shared banks at time t− 1 can still
cause delay for the request on the private banks.



If the previous request was a read, the worst-case delay
occurs when an ACT for the read request is scheduled at t−1,
after three consecutive ACT commands were scheduled. As the
maximum number of ACTs is limited to four in a window of
tFAW cycles, the request at t suffers a delay of follows:

Dreq
pr = tFAW − 3 · tRRD − 1. (1)

In case the previous request was a write, switching the bus
back to read can take up to a full tRC cycles. Hence, Dreq

pw

is defined as follows:

Dreq
pw = tRC − 1. (2)

From the above equations 1 and 2, we can derive the
maximum delay incurred to an HRT request at time t, due
to a previously arrived request at time t− 1 as follows:

Dreq
prior = max(Dreq

pr , Dreq
pw ) (3)

We now calculate the delay caused by the round-robin
scheduling of memory requests on per-core private banks. The
number of co-arrived real-time requests that delay a real-time
memory read request under analysis is bounded by a maximum
of Nrb - 1, where Nrb is the number of reserved banks.

As MEDUSA arbitrates requests to reserved banks in a
round-robin fashion, the longest delay occurs when each
private bank has scheduled an ACT command on a core-
private bank because each ACT causes tRRD cycles of delay
(ACT-ACT delay). If the number of reserved banks is greater
than three, we also need to consider tFAW (four activation
window) timing constraint. Hence the delay Dreq

rr that can
incur to a real-time request from co-arrived HRT requests can
be calculated as follows:

Dreq
rr = (Nrb − 1) · tRRD +

+ bNrb/4c ·max(tFAW − 4 · tRRD, 0) (4)
From the equations 3 and 4, we can calculate the maximum

delay for a real-time read request,Dreq
max, as follows.

Dreq
max = Dreq

prior +Dreq
rr (5)

Assuming the memory delay increase is additive, the worst
case delay DJob

max of a task having Nmisses
LLC number of asso-

ciated LLC misses can be calculated as follows:
DJob

max = Nmisses
LLC · (Dreq

max) (6)
Finally, for a task with its execution time when running

alone in the system, Jsolo, we can derive its worst case
execution time as follows:

Jmax = Jsolo +DJob
max (7)

V. EVALUATION

In this section, we first present implementation details and
simulation settings. We then present our evaluation results
obtained using synthetic and SPEC CPU2006 benchmarks.

A. Evaluation Setup

We implemented MEDUSA in the GEM5 full-system sim-
ulator [3]. The memory controller of the simulator is based
on the recently integrated event based memory controller [8],
which captures important timing and structural constraints of
modern COTS memory system. In the GEM5 simulator, the

FR-FCFS scheduler is implemented as follows. Whenever a
new read request arrives, it is added at the tail of a read queue,
RQ. If the size of the RQ is greater than 1, it invokes a reorder
subroutine which reorders the queue in the following order:
(1) Row hit first - Row hit requests (First Ready) are selected
first. (2) Older over younger - If there are no row-hit requests,
the oldest request in the first ready bank is chosen next.

Currently in MEDUSA, the reserved banks are hard coded
in the simulator, but we plan to provide a programmable reg-
ister and a corresponding OS driver to configure the register.
The simulator models a quad core ARM Cortex-A15 processor
(out-of-order). The baseline system parameters are shown in
Table I. Note that both L1 and L2 (Last level cache) are non-
blocking caches with 10 and 48 MSHRs, respectively, which
determine the local and global limit of outstanding memory
requests. We carefully select the size of L2 MSHR to avoid
any potential contention in the MSHR, as reported in [29].
On the simulator, we run a full Linux 3.14 kernel, which is
patched to use the PALLOC [27] memory allocator.

B. Results with Synthetic Benchmarks

In this experiment, we model a realistic scenario using a
set of synthetic benchmarks, where memory intensive non-
real-time tasks and periodic real-time tasks are co-scheduled
on a single multicore system. We use four instances of HRT
benchmark as real-time tasks and four instances of memory
intensive Bandwidth benchmark as non-real-time tasks.

The experiment procedure is as follows. We start four
Bandwidth benchmark instances on Core0, Core1, Core2
and Core3, respectively. While these Bandwidth instances
are running in the background, we start four HRT tasks in
parallel, one per core, so that each core runs one real-time task
(HRT) and one non-real-time task (Bandwidth). Note that the
HRT tasks are scheduled using the SCHED FIFO real-time
scheduler in Linux, and therefore they are always prioritized
over the Bandwidth benchmarks. The HRT tasks have different
periods—20ms, 30ms, 40ms, and 60ms for Core0, 1, 2, and
3 respectively—but their computation is the same: traversing
a linked list, which is scattered over 2MB (2X size of the
L2) of memory; it takes 2.32 milliseconds (ms) when runs
in isolation. The experiment is performed for the duration of
120ms (two hyper-periods of the real-time tasks). We run the
experiment on three configurations: (1) FR-FCFS(S) - FR-
FCFS scheduler; all banks are shared by all cores. (2) FR-
FCFS(P) - FR-FCFS scheduler; banks are partially partitioned.
(3) MEDUSA - our proposed memory controller ; banks are
partially partitioned and the requests are arbitrated using a two-
level hierarchical scheduler. The same configurations are used
in the rest of the paper. Note that under MEDUSA and FR-
FCFS(P), the memory pages of each real-time task are always
allocated from the respective core’s reserved bank while the
memory pages of all non-real-time tasks are always allocated
from the shared banks. For HRT tasks, we measure the per
request memory access latency and the worst-case response
time of all jobs released during the entire duration.



TABLE I: Baseline processor and DRAM system configuration
Core Quad-core, ARMv7, out-of-order, 4GHz frequency, 300-entry ROB, 255 entry load/store buffers

L1-I cache per-core 32 K-byte, 2-way set-assoc., 64-byte block size, 1 ns hit latency, 2 MSHRs
L1-D cache per-core 32 K-byte, 2-way set-assoc., 64-byte block size, 2 ns hit latency, 10 MSHRs

L2 cache shared 1MByte, 8-way set assoc., 64-byte block size, 12ns hit latency, 48 MSHRs

DRAM controller 64-entry read buffer, 64-entry write buffer, addr. mapping: RoRaBaChCo, open-adaptive page policy
reads prioritized over writes, 85/50 high/low watermark, 18 minimum writes per switch

DRAM chip LPDDR2, 1 rank, 8banks

First, Figure 4(a) shows the per-request memory access
latency distribution of real-time tasks (HRTs) in FR-FCFS(P)
and in MEDUSA. Under these two configurations, each HRT
task has its own dedicated bank, allowing us to observe per-
bank statistics of the simulator. Compared to FR-FCFS(P),
MEDUSA significantly reduces the interference induced to
HRT requests from co-runners. This shows the benefit of our
approach, which prioritizes requests to reserved banks.

Figure 4(b) and Figure 4(c) show worst-case response
time of HRT and the aggregated throughput of Bandwidth,
respectively. MEDUSA achieves up to 88% better performance
in worst-case response time of HRT with only 3% reduction
in throughput of Bandwidth. This is because in MEDUSA,
the high priority real-time tasks execute faster and therefore
non-HRT tasks get longer time to execute. Note also that the
calculatedWorst, analytically calculated worst-case response
time, is shown to provide a reasonable upper-bound.

C. Results with SPEC Benchmark

In this experiment, we follow the same experiment setup as
in the previous experiment. Instead of using the Bandwidth
benchmark, however, we use one of the SPEC CPU2006
benchmarks as non-real-time tasks. We investigated mem-
ory intensive SPEC2006 benchmarks, and measured their L2
MPKI (misses per kilo instruction) and Row-Buffer hit rate.
Among them, we choose libquantum benchmark as non-real-
time tasks because it shows high row-buffer hit ratio, which
will be favored by FR-FCFS scheduler and therefore will cause
significant interference to the real-time tasks. Now each core
runs one instance of libquantum benchmark (non-real-time
task) and one instance of HRT benchmark (real-time task).

Figure 5(a) shows the per-request memory access latency
distribution of real-time tasks (HRT) while running along
with libquantum benchmark as non-real-time tasks. Compared
to the synthetic Bandwidth benchmark, libquantum generates
less number of memory requests. As a result, up to third
quartile of the HRT requests’ memory access latencies doesn’t
show much variations between FR-FCFS(P) and MEDUSA
configurations. To better visualize the difference, we plot the
subset of data above third quartile. The pattern is in tandem
with the previous synthetic experiment results (See 4(a)),
though the magnitude of the difference is smaller.

Figure 5(b) and Figure 5(c) show the worst-case response
time of HRT and the throughput of libquantum, respectively.
Again, as expected, MEDUSA shows significant improve-
ment in worst-case response time. Regarding throughput, FR-
FCFS(P) shows significant improvement over FR-FCFS(S),

suggesting that libquantum is greatly benefited from bank par-
titioning. While MEDUSA offers worse throughput than FR-
FCFS(P) because in MEDUSA libquantum use shared banks,
but it still offers better throughput than FR-FCFS(S) because
HRT tasks run faster, which, in turn, allow libquantum tasks to
execute longer. Lastly, the analytically calculated worst-case
response time, CalculatedWorst, is again shown to provide a
reasonable upper bound. In summary, MEDUSA achieves up
to 61% better worst-case response time performance and up
to 31% better throughput in this experiment.

VI. RELATED WORK

We found that two recently proposed DRAM controller
designs [9], [14] most closely match with our work, as
they also use two different scheduling algorithms—round-
robin and FR-FCFS—depending on the request’s destination
DRAM bank. However, both DRAM controller designs use a
unified queue for reads and writes despite that reads are in the
critical path of the program and should have been prioritized
over writes. This prompts frequent read to write switch of
data bus, which is expensive. The work in [14] divides each
bank into critical space and non-critical space accessed by real-
time tasks and non-real-time tasks respectively ie. banks are
shared between real-time tasks and non-real time tasks. Then
implements a command-level preemption, which preempts the
DRAM commands to non-critical space to issue the ready
command to critical space. However the next critical command
can be issued only after resolving the timing constraint caused
by previously sent command because the bank is shared. This
affects the response time of real-time task. Also the command-
level pre-emption necessitates to reissue the preempted com-
mands to non-critical area. Therefore the non-real-time tasks
may have to pay the timing penalty twice. The analysis in [9]
is pessimistic, because it assumes that the delay susatained to
each DRAM command is additive to the WCET(Worst-Case-
Execution-Time). Rather this should be the maximum of the
delays sustained to individual commands becuse the smaller
command to command delays can be hidden within the larger
command to command delay. In contrast,our design and the
analysis are based on a realistic DRAM controller model (with
read prioritization) and therefore provides a better response
time and throughput.

In recent years, many real-time DRAM controllers were
proposed with a goal of providing predictable memory per-
formance. Several works proposed to partition DRAM banks
at the DRAM controller level [26], [20], [7]. In this approach,
banks are partitioned among the cores by the DRAM con-
troller. While this strict partitioning eliminates bank conflicts
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Fig. 4: HRT vs. Bandwidth: Each core runs one instance of
HRT and one instance of Bandwidth

between the cores, it also makes it physically impossible to
share data among the cores though the memory. In contrast,
software (OS) based bank partitioning techniques [27], [12],
[16] do not require additional hardware support, as they
leverage the OS virtual memory mechanism, and allow sharing
memory between the cores. We adopted an OS-based bank
partitioning technique and extended its use to influence the
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Fig. 5: HRT vs. libquantum: Each core runs one instance of
HRT and one instance of libquantum

DRAM controller’s memory scheduling decision. Through this
close collaboration between the OS and the DRAM controller,
we could achieve both predictability and high performance.

Instead of partitioning DRAM banks, some other real-
time DRAM controller proposals increase the memory access
granularity so that each memory request would access all
DRAM banks [19], [2]. In effect, this approach turns multiple



resources (banks) into a single resource and therefore elim-
inates the complex bank-level interference altogether. Then,
well-understood single resource scheduling algorithms such
as TDMA, Round-Robin, proposal sharing, and others can be
applied to provide predictable timing. However, one problem
of this approach is that it does not scale beyond a certain small
number of banks as the processor’s memory access granularity,
the cache-line size, is limited. In contrast, our approach
can support a large number of DRAM banks and achieve
predictability and high performance through the combination
of bank partitioning and two-level memory scheduling.

VII. CONCLUSION

We presented MEDUSA, a DRAM controller design that
can provide high time predictability when needed for real-
time tasks but also strive to provide high average performance
for non-real-time tasks. In our approach, DRAM banks are
partially partitioned in the sense that some banks are reserved
to certain designated cores while the rest of the banks are
shared by all cores. The bank partitions are determined by the
OS and notified to the DRAM controller. MEDUSA employs
a two-level scheduling algorithm, which first prioritizes the
requests for the reserved banks over the ones for the shared
banks. It uses the round-robin scheduling algorithm for the
reserved banks and uses the FR-FCFS algorithm for the shared
banks. We also presented a worst-case memory interference
analysis method for MEDUSA.

We implemented our approach in a Gem5 simulator and
a Linux kernel and performed experiments using a set of
synthetic and SPEC2006 benchmarks. The results show that
our approach is effective in providing high time predictability
for real-time tasks without hampering the average memory
throughput of non-real-time tasks. As future work, we plan to
investigate multi-channel support, FPGA implementation and
tighter OS integration.
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