
Memory Bandwidth Management for Efficient
Performance Isolation in Multi-core Platforms

Heechul Yun†, Gang Yao‡, Rodolfo Pellizzoni?, Marco Caccamo‡, Lui Sha‡
† University of Kansas, USA. heechul@ittc.ku.edu

‡ University of Illinois at Urbana-Champaign, USA. {gangyao,mcaccamo,lrs}@illinois.edu
? University of Waterloo, Canada. rpellizz@uwaterloo.ca

F

Abstract—Memory bandwidth in modern multi-core platforms is highly
variable for many reasons and it is a big challenge in designing real-
time systems as applications are increasingly becoming more memory
intensive. In this work, we proposed, designed, and implemented an ef-
ficient memory bandwidth reservation system, that we call MemGuard.
MemGuard separates memory bandwidth in two parts: guaranteed
and best effort. It provides bandwidth reservation for the guaranteed
bandwidth for temporal isolation, with efficient reclaiming to maximally
utilize the reserved bandwidth. It further improves performance by
exploiting the best effort bandwidth after satisfying each core’s reserved
bandwidth. MemGuard is evaluated with SPEC2006 benchmarks on a
real hardware platform, and the results demonstrate that it is able to
provide memory performance isolation with minimal impact on overall
throughput.

Index Terms—Multicore, Performance isolation, Operating system,
Memory bandwidth

1 INTRODUCTION

Computing systems are increasingly moving toward multi-core
platforms and their memory subsystem is a crucial shared
resource. As applications become more memory intensive and
processors include more cores that share the same memory
system, the performance of main memory becomes critical
for overall system performance.

In a multi-core system, the processing time of a memory
request is highly variable as it depends on the location of the
access and the state of DRAM chips and the DRAM controller:
There is inter-core dependency as the memory accesses from
one core could also be influenced by requests from other
cores; the DRAM controller commonly employs scheduling
algorithms to re-order requests in order to maximize overall
DRAM throughput [29]. All these factors affect the temporal
predictability of memory intensive real-time applications due
to the high variance of their memory access time. This imposes
a big challenge for real-time systems because execution time
guarantees of tasks running on a core can be invalidated
by workload changes in other cores. Therefore, there is an
increasing need for memory bandwidth management solutions
that provide Quality of Service (QoS).

Resource reservation and reclaiming techniques [32], [1]
have been widely studied by the real-time community to

solve the problem of assigning different fractions of a shared
resource in a guaranteed manner to contending applications.
Many variations of these techniques have been successfully
applied to CPU management [22], [10], [9], disk manage-
ment [39], [36], and more recently to GPU management [20],
[21]. In the case of main memory resource, there have
been several efforts to design more predictable memory con-
trollers [4], [3] providing latency and bandwidth guarantee at
the hardware level.

Unfortunately, existing solutions cannot be easily used for
managing memory bandwidth on Commercial Off-The-Shelf
(COTS) based real-time systems. First, hardware-based so-
lutions are not generally possible in COTS based systems.
Moreover, state-of-art resource reservation solutions [10], [13]
cannot be directly applied to the memory system, mostly
because the achievable memory service rate is highly dynamic,
as opposed to the constant service rate in CPU scheduling.
To address these limitations and challenges, we propose an
efficient and fine-grained memory bandwidth management
system, which we call MemGuard.

MemGuard is a memory bandwidth reservation system im-
plemented in the OS layer. Unlike CPU bandwidth reservation,
under MemGuard, the available memory bandwidth is de-
scribed as having two components: guaranteed and best effort.
The guaranteed bandwidth is the worst-case bandwidth of the
DRAM system, while the additionally available bandwidth
is best effort, which cannot be guaranteed by the system.
Memory bandwidth reservation in MemGuard is based on the
guaranteed part in order to guarantee minimal service to each
core. However, to efficiently utilize all the guaranteed memory
bandwidth, a reclaiming mechanism is proposed leveraging
each core’s usage prediction. We further improve the overall
system throughput by sharing the best effort bandwidth after
the guaranteed bandwidth of each core is satisfied.

Since our reclaiming algorithm is prediction based, mispre-
diction can lead to a situation where guaranteed bandwidth is
not delivered to the core. Therefore, MemGuard is intended to
support mainly soft real-time systems. However, hard real-time
tasks can be accommodated within this resource management
framework by selectively disabling the reclaiming feature.

In our previous work [43], we presented a basic reservation,

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4
7
0
.lb

m

4
3
7
.leslie3

d

4
6
2
.lib

q
u
an

tu
m

4
1
0
.b

w
av

es

4
7
1
.o

m
n
etp

p

4
5
9
.G

em
sF

D
T

D

4
8
2
.sp

h
in

x
3

4
2
9
.m

cf

4
5
0
.so

p
lex

4
3
3
.m

ilc

4
3
4
.zeu

sm
p

4
8
3
.x

alan
cb

m
k

4
3
6
.cactu

sA
D

M

4
0
3
.g

cc

4
5
6
.h

m
m

er

4
7
3
.astar

4
0
1
.b

zip
2

4
0
0
.p

erlb
en

ch

4
4
7
.d

ealII

4
5
4
.calcu

lix

4
6
4
.h

2
6
4
ref

4
4
5
.g

o
b
m

k

4
5
8
.sjen

g

4
3
5
.g

ro
m

acs

4
8
1
.w

rf

4
4
4
.n

am
d

4
6
5
.to

n
to

4
1
6
.g

am
ess

4
5
3
.p

o
v
ray

g
eo

m
ean

S
lo

w
d
o
w

n
 R

at
io

interfering task(470.lbm)
subject task(X-axis)

Fig. 1: IPC slowdown of subject tasks (X-axis) and the
interfering task (470.lbm) on a dual-core configuration

reclaiming, and sharing algorithms of MemGuard. As an ex-
tension of our previous work, in this article, we present a new
best-effort bandwidth sharing algorithm and its experimental
evaluation results. In addition, we also present a new software
implementation that eliminates the linear scheduling overhead,
and a clear definition of the guaranteed and the best-effort
bandwidth. We also present an extensive overhead analysis of
the implementation.

In summary, the contributions of this work are: (1) decom-
posing overall memory bandwidth into a guaranteed and a best
effort components; (2) designing and implementing (in Linux
kernel) an efficient memory bandwidth reservation system,
named MemGuard; (3) evaluating MemGuard with an exten-
sive set of realistic SPEC2006 benchmarks [15] and showing
its effectiveness on a real multi-core hardware platform.

The remaining sections are organized as follows: Section
2 describes the challenge of predictability in modern multi-
core systems. Section 3 describes the overall architecture of
MemGuard. Section 4 describes reservation and reclaiming
algorithms of MemGuard. Section 5 describes two best-
effort bandwidth sharing algorithms of MemGuard. Section
6 describes the evaluation platform and the software imple-
mentation. Section 7 presents the evaluation results. Section 8
discusses related work. We conclude in Section 9.

2 PROBLEMS OF SHARED MEMORY IN MULTI-
CORE SYSTEMS

Many modern embedded systems process vast amount of data
that are collected from various type of sensing devices such as
surveillance cameras. Therefore, many real-time applications
are increasingly becoming more memory bandwidth intensive.
This is especially true in multicore systems, where additional
cores increase the pressure on the shared memory hierarchy.
Therefore, task execution time is increasingly more dependent
on the way that memory resources are allocated among cores.
To provide performance guarantees, real-time system have
long adopted resource reservation mechanisms. Our work is

 0

 10000

 20000

 30000

 40000

 50000

 5000 5200 5400 5600 5800 6000

L
L

C
 m

is
se

s

Time (ms)

470.lbm

(a) 470.lbm

 0

 10000

 20000

 30000

 40000

 50000

 5000 5200 5400 5600 5800 6000

L
L

C
 m

is
se

s

Time (ms)

462.libquantum

(b) 462.libquantum

 0

 10000

 20000

 30000

 40000

 50000

 5000 5200 5400 5600 5800 6000

L
L

C
 m

is
se

s

Time (ms)

450.soplex

(c) 450.soplex

 0

 10000

 20000

 30000

 40000

 50000

 5000 5200 5400 5600 5800 6000

L
L

C
 m

is
se

s

Time (ms)

434.zeusmp

(d) 434.zeusmp

Fig. 2: Memory access pattern of four representative
SPEC2006 benchmarks.

also based on this approach but there are difficulties in apply-
ing a reservation solution in handling memory bandwidth. To
illustrate the problems, we performed two set of experiments
on a real multicore hardware (described in Section 6.1).

In the first experiment, we measured Instructions-Per-Cycle
(IPC) for each SPEC2006 benchmark (subject task) first run-
ning on a core in isolation, and then together with a memory
intensive benchmark (470.lbm) running on a different core
(interfering task). Figure 1 shows IPC slowdown ratio 1 of
co-scheduled tasks on a dual core system (See Section 6.1
and Section 7.2 for details). Note that the subject tasks
are arranged from the most memory intensive to the least
memory intensive on the X-axis. As clearly showed in the
figure, both the subject task and the interfering task suffer
slowdown since they are interfering with each other in the
memory accesses, which is expected. Interestingly, however,
the difference of slowdown factors between the two tasks
could be as large as factor of two (2.2x against 1.2x). Such
effects are typical in COTS systems due to the characteristics
of modern DRAM controllers [29]: (1) each DRAM chip is
composed of multiple resources, called banks, which can be
accessed in parallel. The precise degree of parallelism can be
extremely difficult to predict, since it depends, among others,
on the memory access patterns of the two tasks, the allocation
of physical addresses in main memory, and the addressing
scheme used by the DRAM controller. (2) Each DRAM bank
itself comprises multiple rows; only one row can be accessed
at a time, and switching row is costly. Therefore, DRAM
controllers commonly implement scheduling algorithms that
re-order requests—typically prioritize row hit requests over
row miss requests—to maximize overall memory throughput
[29], [33]. In such a DRAM controller, a task that floods
the DRAM controller with many row hits would suffer less
slowdown than those with many row misses. These results
indicate that memory bandwidth is very different compared
to CPU bandwidth, in the sense that achievable bandwidth
(when requests are backlogged) is not fixed but highly variable

1. The slowdown ratio of a task is defined as run-alone/co-scheduled IPC.

2

depending on the access location of each memory request and
on the state of DRAM subsystem.

Furthermore, the memory access patterns of tasks can be
highly unpredictable and significantly change over time. Fig-
ure 2 shows the memory access patterns of four benchmarks
from SPEC2006. Each benchmark runs alone and we collected
memory bandwidth usage of the task from time 5 to 6 sec.,
sampled over every 1ms time interval (i.e., 1000 samples),
using the LLC miss hardware performance monitoring counter
(PMC). The Y-axis shows the number of LLC misses for
every 1ms interval. The 470.lbm shows relatively uniform
access pattern throughout the whole time. On the other hand,
462.libquantum and 450.soplex show highly variable access
pattern, while 434.zeusmp show mixed behavior over time.

When resource usage changes significantly over time, a
static reservation approach could result in poor resource
utilization and performance. If a task reserves for its peak
resource demand (in this case, the task’s peak memory band-
width demand), it would significantly waste the resource as
the task usually does not consume that amount; while if
the task reserves for its average resource demand, it would
suffer delay whenever it tries to access more than the average
resource demand. The problem is only compounded when
the available resource amount also changes over time, as it
is the case for memory bandwidth. One ideal solution is to
dynamically adjust the resource provision based on its actual
usage: when the task is highly demanding on the resource, it
can try to reclaim some possible spare resource from other
entities; on the other hand, when it consumes less than the
reserved amount, it can share the extra resource with other
entities in case they need it. Furthermore, if the amount of
available resource is higher than expected, we can allocate the
remaining resource units among demanding tasks. There have
been two types of dynamic adaptation schemes: feedback-
control based adaptive reservation approaches [2] and resource
reclaiming based approaches [9], [22]. In our work, we choose
a reclaiming based approach for simplicity.

The details of our bandwidth management system, Mem-
Guard, are provided in the next section. In summary, based on
the discussed experiments, the system will need to: (1) reserve
a fraction of memory bandwidth to each core (a.k.a. resource
reservation) to provide predictable worst-case behavior; and
(2) provide some dynamic resource adjustment on the resource
provision (a.k.a. resource reclaiming and sharing) to efficiently
exploit varying system resource demands and improve task
responsiveness behavior.

3 MEMGUARD OVERVIEW

The goal of MemGuard is to provide memory performance
isolation while still maximizing memory bandwidth utilization.
By memory performance isolation, we mean that the average
memory access latency of a task is no larger than when
running on a dedicated memory system which processes
memory requests at a certain service rate (e.g., 1GB/s). A
multicore system can then be considered as a set of unicore
systems, each of which has a dedicated, albeit slower, memory
subsystem. This notion of isolation is commonly achieved

CORE

DRAM Controller

PMC

DRAM

CORE CORE CORE

PMC PMC PMC

Multicore Processor

Operating System

B/W
Regulator

B/W
Regulator

B/W
Regulator

B/W
Regulator

Reclaim managerMemGuard

Fig. 3: MemGuard system architecture.

through resource reservation approaches in real-time literature
[1] mostly in the context of CPU bandwidth reservation.

In this paper, we focus on systems where the last level cache
is private or partitioned on a per-core basis, in order to focus on
DRAM bandwidth instead of cache space contention effects.
We assume system operators or an external user-level daemon
will configure MemGuard either statically or dynamically via
the provided kernel filesystem interface.

Figure 3 shows the overall system architecture of Mem-
Guard and its two main components: the per-core regulator
and the reclaim manager. The per-core regulator is responsible
for monitoring and enforcing its corresponding core memory
bandwidth usage. It reads the hardware PMC to account the
memory access usage. When the memory usage reaches a pre-
defined threshold, it generates an overflow interrupt so that
the specified memory bandwidth usage is maintained. Each
regulator has a history based memory usage predictor. Based
on the predicted usage, the regulator can donate its budget
so that cores can start reclaiming once they used up their
given budgets. The reclaim manager maintains a global shared
reservation for receiving and re-distributing the budget for all
regulators in the system.

Using the regulators, MemGuard allows each core to reserve
a fraction of memory bandwidth, similar to CPU bandwidth
reservation. Unlike CPU bandwidth, however, available mem-
ory bandwidth varies depending on memory access patterns.
In order to achieve performance isolation, MemGuard restricts
the total reservable bandwidth to the worst case DRAM band-
width, guaranteed bandwidth rmin (see Section 4), similar to
the requirement of CPU bandwidth reservation in that the total
sum of CPU bandwidth reservation must be equal or less than
100% of CPU bandwidth. Because the memory system can
deliver at least the guaranteed memory bandwidth, its fraction
reserved by each core can be satisfied regardless of the other
cores’ reservations and their memory access patterns. We will
experimentally show performance isolation impact of memory
bandwidth reservation in Section 7.1. From the application
point of view, the reserved bandwidth can be used to determine
its worst-case performance.

Note, however, there are two main problems in the presented
reservation approach. First, a core’s reserved bandwidth may
be wasted if it is not used by the core. Second, the total

3

B
an

k
0

Row Buffer

Row 0

Row N-1

Bank
0

Bank
7

DRAM Chip 0

B
an

k
0

Row Buffer

Row 0

Row N-1

Bank
0

Bank
7

DRAM Chip 7

DRAM Controller

Fig. 5: DRAM based memory system organization—Adopted
from Fig. 2 in [27]

reservable bandwidth, the guaranteed bandwidth, is much
smaller than the peak bandwidth (e.g., 1.2GBs/s guaranteed
vs. 6.4GB/s peak bandwidth in our testbed). Any additional
bandwidth, best-effort bandwidth (see Section 5), will also be
wasted in the reservation only approach. For these two main
reasons, reservation alone could significantly waste memory
bandwidth utilization and therefore result in low application
performance.

To mitigate this inefficiency while still retaining the benefits
of bandwidth reservation, MemGuard offers two additional ap-
proaches: bandwidth reclaiming and bandwidth sharing. Band-
width reclaiming approach (Section 4.3) focuses on managing
the guaranteed bandwidth; it dynamically re-distributes band-
width from cores that under-utilized their reserved bandwidths
to cores that need more bandwidths than their reserved ones.
On the other hand, bandwidth sharing approaches (Section 5.2
and 5.3) focus on managing the best-effort bandwidth and they
only work after all the guaranteed bandwidth is collectively
used up by the cores in the system.

Figure 4 shows the high level implementation of Mem-
Guard. Using the figure as a guide, we now describe the
memory bandwidth management mechanisms of MemGuard
in the following sections.

4 GUARANTEED BANDWIDTH MANAGEMENT

In this section, we first give necessary background informa-
tion about DRAM based memory subsystems and define the
guaranteed bandwidth which is the basis for our reservation
and reclaiming. We then detail the reservation and reclaiming
mechanisms of MemGuard.

4.1 Guaranteed Memory Bandwidth
Figure 5 shows the organization of a typical DRAM based
memory system. A DRAM module is composed of several
DRAM chips that are connected in parallel to form a wide
interface (64bits for DDR). Each DRAM chip has multiple
banks that can be operated concurrently. Each bank is then
organized as a 2d array consisting of rows and columns. A
location in DRAM can be addressed with the bank, row and
column number.

function periodic timer handler master ;1

begin2

G← 0;3

on each cpu(periodic timer handler slave) ;4

end5

function periodic timer handler slave ;6

begin7

Qpredict
i ← output of usage predictor ;8

Qi ← user assigned static budget ;9

if Qpredict
i > Qi then10

qi ← Qi;11

else12

qi ← Qpredict
i ;13

G += (Qi − qi);14

program PMC to cause overflow interrupt at qi;15

de-schedule the high priority idle task (if it was16

active);
end17

function overflow interrupt handler ;18

begin19

ui ← used budget in the current period ;20

if G > 0 then21

if ui < Qi then22

qi ← min{Qi − ui, G} ;23

else24

qi ← min{Qmin, G} ;25

G -= qi;26

program PMC to cause overflow interrupt at qi ;27

Return ;28

if ui < Qi then29

Return ;30

if
∑

ui >= rmin then31

manage best-effort bandwidth (see Section 5) ;32

stall the core by scheduling the high priority idle task;33

end34
Fig. 4: MemGuard Implementation

In each bank, there is a buffer, called row buffer, to store a
single row (typically 1-2KB) in the bank. In order to access
data, the DRAM controller must first copy the row containing
the data into the row buffer (i.e., opening a row). The required
latency for this operation is denoted as tRCD in DRAM
specifications. The DRAM controller then can read/write from
the row buffer with only issuing column addresses, as long as
the requested data is in the same row. The associated latency
is denoted as tCL. If the requested data is in a different row,
however, it must save the content of the row buffer back to the
originating row (i.e., closing a row). The associated latency is
denoted as tRP . In addition, in order to open a new row in the
same bank, at least tRC time should have been passed since
the opening of the current row. Typically tRC is slightly larger
than the sum of tRCD, tCL, and tRP . The access latency
to a memory location, therefore, varies depending on whether
the data is already in the row buffer (i.e., row hit) or not (i.e.,

4

row miss) and the worst-case performance is determined by
tRC parameter.2

Considering these characteristics, we can distinguish the
maximum (peak) bandwidth and the guaranteed (worst-case)
bandwidth as follows:

• Maximum (peak) bandwidth: This is stated maximum
performance of a given memory module where the speed
is only limited by I/O bus clock speed. For example, a
PC6400 DDR2 memory’s peak bandwidth is 6.4 GB/s
where it can transfer 64bit data at the rising and falling
edge of bus cycle running at 400MHz.

• Guaranteed (worst-case) bandwidth: The worst-case
occurs when all memory requests target a single memory
bank, and each successive request accesses different row,
causing a row switch (row miss). For example, the worst-
case bandwidth of the PC6400 DDR2 memory used in
our evaluation is 1.2GB/s, based on parameters in [26].

Because the guaranteed bandwidth can be satisfied regard-
less of memory access locations, we use the guaranteed band-
width as the basis for bandwidth reservation and reclaiming
as we will detail in the subsequent subsections.

4.2 Memory Bandwidth Reservation

MemGuard provides two levels of memory bandwidth reser-
vation: system-wide reservation and per-core reservation.

1) System-wide reservation regulates the total allowed mem-
ory bandwidth such that it does not exceed the guaranteed
bandwidth — denoted as rmin.

2) Per-core reservation assigns a fraction of rmin to each
core, hence each core reserves bandwidth Bi and∑m−1

i=0 Bi = rmin where m is the number of cores.
Each regulator reserves memory bandwidth represented by

memory access budget Qi (in bytes) for every period P (in
seconds): i.e. Bi =

Qi

P (bytes/sec). Regulation period P is a
system-wide parameter and should be small to effectively en-
force specified memory bandwidth. Although small regulation
period is better for predictability, there is a practical limit on
reducing the period due to interrupt and scheduling overhead;
we currently configure the period as 1ms. The reservation
follows the common resource reservation rules [32], [35],
[37]. For accurately accounting memory usage, we use per-
core PMC interrupt: specifically, we program the PMC at the
beginning of each regulation period so that it generates an
interrupt when the core’s budget is depleted. Once the interrupt
is received, the regulator calls the OS scheduler to schedule
a high-priority real-time task to effectively idle the core until
the next period begins. At the beginning of the next period
the budget is replenished in full and the real-time “idle” task
will be suspended so that regular tasks can be scheduled.
Because the reservation mechanism is based on hardware PMC
interrupts, it can accurately regulate the maximum number of
memory accesses of each core for each period P .

2. We do not consider auto-refresh as its impact on the bandwidth is
small [8], due to the long referesh interval (tREFI). We also do not consider
the bus turn-arounds because COTS dram controllers typically process reads
and writes in batches which amortize the bus turn-around delay [28].

4.3 Memory Bandwidth Reclaiming

Each core has statically assigned bandwidth Qi as the baseline.
It also maintains an instant budget qi to actually program the
PMC which can vary at each period based the output of the
memory usage predictor. We currently use an Exponentially
Weighted Moving Average (EWMA) filter as the memory
usage predictor which takes the memory bandwidth usage of
the previous period as input. The reclaim manager maintains
a global shared budget G. It collects surplus bandwidth from
each core and re-distributes it when in need. Note that G
is initialized by the master core (Core0) at the beginning of
each period (Line 3 in Figure 4) and any unused G in the
previous period is discarded. Each core only communicates
with the central reclaim manager for donating and reclaiming
its budget. This avoids possible circular reclaiming among
all cores and greatly reduces implementation complexity and
runtime overhead.

The details of the reclaiming rules are as follows:
1) At the beginning of each regulation period, the current

per-core budget qi is updated as follows:

qi = min{Qpredict
i , Qi}

If the core is predicted not to use the full amount of
the assigned budget Qi, the current budget is set the
predicted usage, Qpredict

i (See Line 12-13 in Figure 4).
Any predicted surplus budget of the core is donated to
the global budget G (Line 14 in Figure 4). Hence, G is:

G =
∑
i

{Qi − qi}.

2) During execution, the core can reclaim from the global
budget if its corresponding budget is depleted. The
amount of reclaim depends on the requesting core’s
condition: If the core’s used budget ui is less than the
statically reserved budget Qi (this can happen when
Qpredict

i < Qi), then it tries to reclaim up to Qi as
follows (Line 23 in Figure 4):

qi = min{Qi − ui, G}.

Or, if ui ≥ Qi (getting more than its reserved amount),
it only gets up to a small fixed amount of budget, Qmin

(See Line 25 in Figure 4):

qi = min{Qmin, G}.

If Qmin is too small, too many interrupts can be generated
within a period, increasing overhead. On the other hand,
if, it is too big, it might increase the probability of reclaim
under-run error, described in the next item. As such, it
is a configuration parameter. We currently assign 1%
of the peak bandwidth as the value of Qmin. After the
core updates its budget qi, it reprograms the performance
counter and return (Line 27-28 in Figure 4).

3) Since our reclaim algorithm is based on prediction, a core
may not be able to use its assigned budget Qi. This can
happen when the core donated its budget too much (due
to mis-prediction) and other cores already reclaimed all
donated budgets (G = 0) before the core tries to reclaim.

5

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���

��������
��������
��������
��������

������
������
������
������

����

�����
�����
�����
�����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

3

3

stall CPU executionmemory access

global

1

time

2

4

Core0

Core1

0 5 10 15 2520

budget

G

1

q

q

Fig. 6: An illustrative example with two cores

When this happens, our current heuristic is to allow the
core to continue execution, hoping it may still use Qi,
although it is not guaranteed (Line 29-30 in Figure 4). At
the beginning of the next period, we verify if each core
was able to use its budget. If not, we call it a reclaim
under-run error and notify the predictor of the difference
(Qi − ui). The predictor then tries to compensate it by
using Qi + (Qi − ui) as its input for the next period.

4.4 Example
Figure 6 shows an example with two cores, each with an
assigned static budget 3 (i.e., Q0 = Q1 = 3). The regulation
period is 10 time units and the arrows at the top of the figure
represent the period activation times. The figure shows the
global budget G two cores’ instant budgets q1 and q2

When the system starts, each core starts with the assigned
budget 3. At time 10, the prediction Qpredict of both cores
is 1 as both have used only 1 budget (i.e., u1 = u2 = 1)
within the period [0,10]; hence, the instant budgets q1 and
q2 become 1 and the global budget G becomes 4 (Line 13-
14 in Figure 4). At time 12, Core 1 depletes qi. Since Q1

is 3, Core1 reclaims 2 (Q1 − q1, Line 23 in Figure 4) from
G and q1 becomes 2. At time 15, Core1 depletes its budget
again. This time Core1 already has used Qi, it only reclaims
1 (Qmin, Line 25 in Figure 4) from G and q1 becomes 1.
At time 16, Core0 depletes its budget. Since remaining G is
1 at this point, Core0 only reclaims 1 and G drops to 0. At
time 17, Core1 depletes its budget again and it is suspended
(Line 33 in Figure 4) as it cannot reclaim from G. When the
third period starts at time 20, the Qpredict

1 is larger than Q1.
Therefore, Core1 gets the full amount of the assigned budget,
q1 = Q1 = 3 (Line 11 in Figure 4), while Core0 only gets
1, and donates 2 to G. At time 25, after Core1 depletes q1,
Core1 reclaims Qmin from G.

5 BEST-EFFORT BANDWIDTH MANAGEMENT

In this section, we first define the best-effort memory band-
width in MemGuard and describe two proposed management
schemes: spare sharing and proportional sharing.

5.1 Best-effort Memory Bandwidth

We define best-effort memory bandwidth as any addition-
ally achieved bandwidth above the guaranteed bandwidth
rmin. Because rmin is smaller (e.g., 1.2GB/s) than the peak
bandwidth (e.g., 6.4GB/s), efficient utilization of best-effort
bandwidth is important, especially for memory intensive tasks.

As described in the previous section, memory reserva-
tion and reclaiming algorithms in MemGuard operate on the
guaranteed bandwidth rmin. If all cores exhaust their given
bandwidths before the current period ends, however, all cores
would wait for the next period doing nothing under the rules
described in Section 4. Since MemGuard already delivered
reserved bandwidth to each core, any additional bandwidth is
now considered as best-effort bandwidth.

5.2 Spare Sharing

When all cores collectively use their assigned budgets (Line
31 in Figure 4), the spare sharing scheme simply let all cores
compete for the memory until the next period begins. This
strategy maximizes throughput as it is effectively equivalent to
temporarily disabling the MemGuard. In another perspective,
it gives an equal chance for each core to utilize the remain-
ing best-effort bandwidth, regardless of its reserved memory
bandwidth.

Figure 7(a) shows an example operation of the scheme. At
time 5, Core0 depletes its budget and it suspend the core (Line
33 in Figure 4), assuming the G is zero in the period. At time 7,
Core1 depletes its budget. At this point, there are no cores that
have remaining budgets. Therefore, Core1 sends a broadcast
message to wake-up the cores; and both cores compete for the
memory until the next period begins at time 10.

Note that this mechanism only starts after all the cores have
depleted their assigned budgets. The reason is that if a core
has not yet used its budget, allowing other cores to execute
may bring intensive memory contention, preventing the core
from using the remaining budget.

5.3 Proportional Sharing

The proportional sharing scheme also starts after all cores
use their budgets like the spare-sharing scheme, described in
the previous subsection, but it differs in that it starts a new
period immediately instead of waiting the remaining time in
the period. This effectively makes each core to utilize the best-
effort bandwidth proportional to its reserved bandwidth—i.e.,
the more the Qi, the more best-effort bandwidth the core gets.

Figure 7(b) shows an example operation of the scheme. At
time 7, when all cores have used their budgets, it starts a new
period and each core’s budget is recharged immediately. This
means that the length of each period can be shorter depending
on workload. However, if the condition is not met, i.e., there
is at least one core that has not used its budget, then the same
fixed period length is enforced.

This scheme bears some similarities with the IRIS algo-
rithm, a CPU bandwidth reclaiming algorithm [23], which
extends CBS [1] to solve the deadline aging problem of CBS;
in the original CBS, when a server exhausts its budget, it

6

20
stall CPU executionmemory access

0 5 10 15

3

3

1

time

core0

core1

q

q

(a) Spare Sharing

20
stall CPU executionmemory access

0 5 10 15

3

3

1

time

core0

core1

q

q

(b) Proportional Sharing

Fig. 7: Comparison of two best-effort bandwidth management schemes

CORE 0CORE 0 CORE 1 CORE 2CORE 2 CORE 3

SYSTEM BUS

II DD I D II DD I D

MEMORY

L2 Cache L2 Cache

Intel Core2Quad Processor

Fig. 8: Hardware architecture of our evaluation platform.

immediately recharges the budget and extends the deadline.
This can cause very long delays to CPU intensive servers that
extend deadlines very far ahead while other servers are inac-
tive. The IRIS algorithm solves this problem by introducing
a notion of recharging time in which a server that exhausts
its budget must wait until it reaches the recharging time.
If there is no active server and there is at least one server
that waits for recharging, IRIS updates server’s time to the
earliest recharging time. This is similar to the proportional
sharing scheme presented in this subsection in that servers’
budgets are recharged when all servers have used their given
budgets. They are, however, significantly different in the sense
that proportional sharing is designed for sharing memory
bandwidth between multiple concurrently accessing cores and
is it is not based on CBS scheduling method.

6 EVALUATION SETUP

In this section, we present details on the hardware platform
and the MemGuard software implementation. We also provide
detailed overhead analysis and discuss performance trade-off.

6.1 Evaluation platform
Figure 8 shows the architecture of our testbed. We use an
Intel Core2Quad Q8400 processor based desktop computer as

our testbed. The processor is clocked at 2.66GHz and has
four physical cores. It contains two separate 2MB L2 caches,
each of which is shared by two cores. As our focus is not the
shared cache, we use cores that do not share the same LLC for
experiments. We do, however, use four cores when tasks are
not sensitive to shared LLC by nature (e.g., working set size
of each task is bigger than the LLC size). We use two 2GB
PC6400 DDR2 DRAM (2 ranks/module, 8banks/rank, and
16K rows/bank). We experimentally measured the guaranteed
bandwidth rmin as 1.2GB/s, which is also in a match with the
computed value using parameters in [26].

In order to account per-core memory bandwidth usage, we
used a LLC miss performance counter 3 per each core. Since
the LLC miss counter does not account prefetched memory
traffic, we disabled all hardware prefetchers 4.

Note that LLC miss counts do not capture LLC write-
back traffic which may underestimate actual memory traffic,
particularly for write-heavy benchmarks. However, because
SPEC2006 benchmarks, which we used in evaluation, are read
heavy (only 20% of memory references are write [19]); and
memory controllers often implement write-buffers that can be
flushed later in time (e.g., when DRAM is not in use by other
outstanding read requests) and writes are considered to be
completed when they are written to the buffers [17]; therefore,
write-back traffic do not necessarily cause additional latency in
accessing DRAM. Analyzing the impact of accounting write-
back traffic in terms of performance isolation and throughput
is left as future work.

6.2 Implementation Details and Overhead Analysis

We implemented MemGuard in Linux version 3.6 as a kernel
module 5. We use the perf event infrastructure to install the
counter overflow handler at each period. The logic of both
handlers is already shown in Figure 4.

3. LAST LEVEL CACHE MISSES: event=2e, umask=41. See [18]
4. We used http://www.eece.maine.edu/∼vweaver/projects/prefetch-disable/
5. MemGuard is available at https://github.com/heechul/memguard

7

 http://www.eece.maine.edu/~vweaver/projects/prefetch-disable/

 0

 10000

 20000

 30000

 40000

 50000

 0 2000 4000 6000 8000 10000

L
L

C
 m

is
se

s

Time(ms)

434.zeusmp

(a) w/o MemGuard

 0

 10000

 20000

 30000

 40000

 50000

 0 2000 4000 6000 8000 10000

L
L

C
 m

is
se

s

Time(ms)

434.zeusmp

(b) MemGuard (1GB/s)

Fig. 9: Memory access patterns of a SPEC2006 benchmark.

With MemGuard, system designers can assign an absolute
bandwidth value for each core (e.g., 1GB/s) or a relative
weight expressing its relative importance. In the latter case,
the actual bandwidth is calculated at every period by checking
active cores (cores that have runnable tasks in their runqueues).
Figure 9 shows memory access patterns of a benchmark with
(reservation only) and without using MemGuard.

Compared to our previous implementation [43], we made
several changes. First, as explained in Section 4, we now
schedule a high-priority real-time task to “throttle” the core
instead of de-scheduling all the tasks in the core. This solves
the problem of linearly increasing overhead as the number
of tasks increase. Second, we now use a dedicated timer for
pacing the regulation period, instead of using the OS tick timer
to easily re-program the length of each period—it is needed to
support the proportional sharing mode in Section 5.3. To syn-
chronize the period among all cores, a core (the master core) is
designated to receive the timer interrupts. On receiving a timer
interrupt, the master core broadcasts the new period to the rest
of the cores via inter-processor interrupts (IPIs). Although this
master-slave architecture incurs some propagation delay, we
found it is negligible (typically a few micro seconds) compared
to the period length. Regarding IPI overhead, similar findings
were reported in [11]. The PMC programming overhead is
also negligible as it only requires a write to each core’s local
register. The overhead of scheduling a real-time idle task is
equal to a single context switch overhead, which is typically
less than 2µs in the tested platform 6 , regardless of the number
of tasks in the core; this is a notable improvement compared to
our previous implementation in which overhead grows linearly
as the number of tasks increase.

Note, however, that MemGuard does incur some perfor-
mance overhead for several reasons. First, each core receives a
period interrupt (either timer or IPI interrupt) at every period.
So, computation time of the period interrupt would be added to
the task execution time. Second, a core can receive a number
of performance counter overflow interrupts, especially when
reclaiming is enabled. In that case, computation time of the
overflow handler would also increase the task execution time.
Third, executing the interrupt handlers could evict some cache-
lines used by tasks, which would indirectly increase the task
execution time. Lastly, MemGuard maintains a few shared
global variables (e.g., G) which are protected by a spinlock.
As such, when multiple cores try to access the lock, there can
be some lock contention effect.

6. Measured using lat ctx of LMBench3[25].

 0

 1

 2

 3

 4

 5

 6

 7

 8

100 250 500 1000 2500

O
v
e
rh

e
a
d
 (

%
)

Period (μs)

Timer + overflow
Timer-only

Fig. 10: Runtime overhead vs. Period

We conduct an experiment to quantify overhead caused by
MemGuard. In this experiment, we first run four instances of
the Latency benchmark [43] (one for each core) and measure
the execution time of the one at Core 0. We then repeat the
experiment with using MemGuard on two different settings:
Timer-only and Timer+overflow. In Timer-only setting, we
assign very high bandwidths to cores so that only timer inter-
rupts occur periodically. In Timer+overflow setting, however,
we assign very small bandwidths to cores so that each core
generates an overflow interrupt and a timer interrupt handler in
each period. To exclude the execution time increase due to core
throttling and to measure only the overhead of both interrupt
handlers themselves, we disabled throttling (i.e., commenting
out Line 30 in Figure 4) during the experiment.

Figure 10 shows performance overhead (i.e., increased task
execution time due to the interrupt handlers) as a function
of the period length. Note that with 1ms (1000µs) period,
performance overhead is less than 2%. But as we reduce
the period length further, overhead increases—up to 8% with
100µs period. Based on the results, we pick 1ms as the default
period length and use it for the rest of our evaluation.

7 EVALUATION RESULTS AND ANALYSIS

In this section, we evaluate MemGuard in terms of perfor-
mance isolation guarantee and throughput with SPEC2006
benchmarks and a set of synthetic benchmarks.

To understand characteristics of SPEC2006 benchmarks, We
first profile them as follows: We run each benchmark for 10
seconds with the reference input and measure the instruction
counts and LLC miss counts, using perf tool in Linux kernel,
to calculate the average IPC and the memory bandwidth usage.
We multiply the measured LLC miss count with the cache-
line size (64 bytes in our testbed) to get the total memory
bandwidth usage. Note that MemGuard is not being used in
this experiment.

Table 1 shows the characteristics of each SPEC2006 bench-
mark, in decreasing order of average memory bandwidth
usage, when each benchmark runs alone on our evaluation
platform. Notice that the benchmarks cover a wide range of
memory bandwidth usage, ranging from 1MB/s (453.povray)
up to 2.1GB/s (470.lbm).

In the subsequent experiments, we use four different modes
of MemGuard: reserve only (MemGuard-RO), b/w reclaim

8

Benchmark Avg. Avg. Memory
IPC B/W(MB/s) Intensity

470.lbm 0.52 2121
437.leslie3d 0.51 1581
462.libquantum 0.60 1543
410.bwaves 0.62 1485
471.omnetpp 0.83 1373 High
459.GemsFDTD 0.50 1203
482.sphinx3 0.58 1181
429.mcf 0.18 1076
450.soplex 0.54 1025
433.milc 0.59 989
434.zeusmp 0.93 808
483.xalancbmk 0.54 681
436.cactusADM 0.68 562
403.gcc 0.98 419
456.hmmer 1.53 317 Medium
473.astar 0.58 307
401.bzip2 0.97 221
400.perlbench 1.36 120
447.dealII 1.41 118
454.calculix 1.53 113
464.h264ref 1.42 101
445.gobmk 0.97 95
458.sjeng 1.10 74
435.gromacs 0.86 60
481.wrf 1.73 38 Low
444.namd 1.47 18
465.tonto 1.38 2
416.gamess 1.34 1
453.povray 1.17 1

TABLE 1: SPEC2006 characteristics

(MemGuard-BR), b/w reclaim + spare share (MemGuard-
BR+SS), and b/w reclaim + proportional sharing (MemGuard-
BR+PS). In MemGuard-RO mode, each core only can use its
reserved b/w as described in Section 4.2. The MemGuard-
BR mode uses the predictive memory bandwidth reclaiming
algorithm described in Section 4.3. Both MemGuard-BR+SS
mode and MemGuard-BR+PS use the bandwidth reclaiming
but differ in how to manage the best-effort bandwidth after
all cores collectively consume the guaranteed bandwidth as
described in Section 5.2 and Section 5.3 respectively.

In all experiments, we repeat each experiment at least three
times and choose the highest performing result.

7.1 Performance Isolation Effect of Reservation
In this experiment, we illustrate the effect of memory band-
width reservation on performance isolation. Specifically, our
goal is to validate whether the bandwidth reservation rule
(i.e.,

∑m−1
i=0 Bi = rmin in Section 4.2) provides adequate

performance isolation among the cores.
The experiment setup is as follows. We first measure the

IPC of each SPEC2006 benchmarks alone on Core0 with
1.0GB/s memory bandwidth reservation. We then repeat the
experiment but co-schedule 470.lbm, the most memory in-
tensive benchmark, on Core2 with several different memory
bandwidth reservations—varying from 0.2 to 2.0 GB/s. Note
that assigning more than 0.2GB/s on Core 2 makes the total
reserved bandwidth exceeds the estimated rmin of 1.2GB/s,
which violates our reservation rule. Also note that, in this
experiment, we use the reservation only mode (MemGuard-
RO) and disable reclaiming and sharing. In other words, each
core can use only up to the reserved bandwidth but no more.

Figure 11 shows the normalized IPC of 462.libquantum
benchmark on Core0 as a function of reserved bandwidth

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 N/A 0.2 0.8 1.4 2.0

N
or

m
al

iz
ed

 I
P

C
 o

f
46

2.
li

bq
ua

nt
um

(C
or

e0
@

1G
B

/s
)

Reserved bandwidth of 470.lbm at Core2 (GB/s)

Solo Corun

Fig. 11: Normalized IPC of 462.libquantum (Core0@1.0GB/s)

of the interfering 470.lbm on Core2. First, note that the
benchmark’s solo and co-run performance results are almost
identical when the reserved bandwidth for the co-running
470.lbm at Core2 is 0.2GB/s. In other words, performance
isolation is achieved as performance of 462.libquantum is
not affected by the co-scheduled 470.lbm. As we increase
470.lbm’s assigned memory bandwidth, however, performance
of 462.libquantum gradually decreases; when the reserved
bandwidth for 470.lbm is 2.0GB/s (i.e., 3.0GB/s aggregate
bandwidth reservation), more than 40% IPC reduction is
observed due to increased memory contention. Results for
the rest of SPEC benchmarks also show consistent behavior
but are omitted due to space limitations. We also performed
experiments with different bandwidth assignments for the sub-
ject tasks and found consistent behavior. The full figures that
include all benchmarks and different bandwidth assignments
are available in [44].

7.2 Effect of Reclaiming and Sharing
In this experiment, we evaluate the effectiveness of bandwidth
reclaiming (MemGuard-BR) and sharing (MemGuard-BR+SS
and MemGuard-BR+PS) mechanisms on a dual-core system
configuration.

The experiment setup is as follows: We first measure
the IPC of each SPEC2006 benchmarks (subject task) alone
on Core0 with 1.0GB/s memory bandwidth reservation and
the IPC of 470.lbm (interfering task) alone on Core2 with
0.2GB/s reservation using MemGuard-RO. We then repeat
the experiment but this time co-schedule each subject task
and the interfering task pair together using MemGuard-RO,
MemGuard-BR+SS, and MemGuard-BR+PS. Note that in all
cases, the statically reserved bandwidths of Core0 and Core2
are 1.0GB/s and 0.2GB/s respectively. Notice that the Core2
is under-reserved as 470.lbm’s unregulated average bandwidth
is above 2GB/s (see Table 1).

Figure 12 shows the normalized IPCs (w.r.t. MemGuard-
RO) of each co-scheduled subject and interfering task pair.
The subject tasks in X-axis are sorted in decreasing order of
memory intensity. The value of 1 or above means that the
performance of the benchmark is equal to or better than the
performance with its reserved memory bandwidth only; if the
value is less than 1, performance of the benchmark is suffered
due to interferences from the other core. MemGuard-BR shows

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

470.lbm

437.leslie3d

462.libquantum

410.bw
aves

471.om
netpp

459.G
em

sF
D

T
D

482.sphinx3

429.m
cf

450.soplex

433.m
ilc

434.zeusm
p

483.xalancbm
k

436.cactusA
D

M

403.gcc

456.hm
m

er

473.astar

401.bzip2

400.perlbench

447.dealII

454.calculix

464.h264ref

445.gobm
k

458.sjeng

435.grom
acs

481.w
rf

444.nam
d

465.tonto

416.gam
ess

453.povray

geom
ean

N
or

m
al

iz
ed

 I
P

C
subject task(X-axis)

interfering task(470.lbm)

(a) MemGuard-BR (b/w reclaim)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

470.lbm

437.leslie3d

462.libquantum

410.bw
aves

471.om
netpp

459.G
em

sF
D

T
D

482.sphinx3

429.m
cf

450.soplex

433.m
ilc

434.zeusm
p

483.xalancbm
k

436.cactusA
D

M

403.gcc

456.hm
m

er

473.astar

401.bzip2

400.perlbench

447.dealII

454.calculix

464.h264ref

445.gobm
k

458.sjeng

435.grom
acs

481.w
rf

444.nam
d

465.tonto

416.gam
ess

453.povray

geom
ean

N
or

m
al

iz
ed

 I
P

C

subject task(X-axis)
interfering task(470.lbm)

(b) MemGuard-BR+SS (b/w reclaim + spare share)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

470.lbm

437.leslie3d

462.libquantum

410.bw
aves

471.om
netpp

459.G
em

sF
D

T
D

482.sphinx3

429.m
cf

450.soplex

433.m
ilc

434.zeusm
p

483.xalancbm
k

436.cactusA
D

M

403.gcc

456.hm
m

er

473.astar

401.bzip2

400.perlbench

447.dealII

454.calculix

464.h264ref

445.gobm
k

458.sjeng

435.grom
acs

481.w
rf

444.nam
d

465.tonto

416.gam
ess

453.povray

geom
ean

N
or

m
al

iz
ed

 I
P

C

subject task(X-axis)
interfering task(470.lbm)

(c) MemGuard-BR+PS (b/w reclaim + proportional share)

Fig. 12: Normalized IPCs of SPEC2006 benchmarks.

the effect of our bandwidth reclaiming algorithm. For most
pairs, the interfering task achieves a higher IPC compared to
the baseline (i.e., MemGuard-RO). This can be explained as
follows: if the subject task does not use the assigned budget,
the corresponding interfering task can effectively reclaim the
unused budget and make more progress. In particular, the
interfering tasks in the right side of the figure (from 433.milc
on the X-axis) show significant performance improvements.
This is because the corresponding subject task uses consider-
ably smaller average bandwidth than their assigned budgets.
Consequently, interfering tasks can reclaim more budgets and
achieve higher performance. The average IPC of all interfering
tasks is improved by 3.7x, compared to the baseline, showing
the effectiveness of the reclaiming algorithm.

 0

 0.5

 1

 1.5

 2

470.lbm

437.leslie3d

462.libquantum

410.bwaves

471.omnetpp

459.GemsFDTD

482.sphinx3

429.mcf

450.soplex

geomean

N
or

m
al

iz
ed

 I
P

C

MemGuard-BR MemGuard-BR+SS MemGuard-BR+PS

(a) Subject tasks (X-axis)@Core0

 0

 1

 2

 3

 4

 5

470.lbm

437.leslie3d

462.libquantum

410.bwaves

471.omnetpp

459.GemsFDTD

482.sphinx3

429.mcf

450.soplex

geomean

N
or

m
al

iz
ed

 I
P

C

MemGuard-BR MemGuard-BR+SS MemGuard-BR+PS

(b) Interfering task (470.lbm)@Core2

Fig. 13: Normalized IPC of nine memory intensive SPEC2006
benchmarks (a) and the co-running 470.lbm (b). The X-axis
shows the subject task on Core 0 in both sub-figures.

 0

 5

 10

 15

 20

470.lbm

437.leslie3d

462.libquantum

410.bw
aves

471.om
netpp

459.G
em

sFD
T

D

482.sphinx3

429.m
cf

450.soplex

433.m
ilc

434.zeusm
p

483.xalancbm
k

436.cactusA
D

M

403.gcc

456.hm
m

er

473.astar

401.bzip2

400.perlbench

447.dealII

454.calculix

464.h264ref

445.gobm
k

458.sjeng

435.grom
acs

481.w
rf

444.nam
d

465.tonto

416.gam
ess

453.povray

average

R
ec

la
im

 e
rr

or
 ra

te
(%

)

Fig. 14: Reclaim under-run error rate in MemGuard-BR mode

Note that the slowdowns of the subject tasks, due to
reclaiming of the interfering task, are small—less than 3%
on average. The slight performance reduction, i.e., reduced
performance isolation, can be considered as a limitation of our
prediction based approach that can result in reclaim under-
run error as described in Section 4.3. To better understand
this, Figure 14 shows reclaim under-run error rates (error
periods / total periods) of the experiments used to draw
Figure 12(a). On average, the error rate is 4% and the worst
case error rate is 16% for 483.xalancbmk. Note that although
483.xalancbmk suffers higher reclaim under-run error rate, it

10

 0

 0.2

 0.4

 0.6

 0.8

 1

lbm+lbm

lbm+leslie3d

lbm+libquantum

lbm+bwaves

lbm+omnetpp

lbm+GemsFDTD

lbm+sphinx3

lbm+mcf

lbm+soplex

geomean

N
or

m
al

iz
ed

 I
P

C
 S

um
MemGuard-RO
MemGuard-BR

MemGuard-BR+SS

MemGuard-BR+PS
w/o MemGuard

Fig. 15: Aggregated throughput comparison

does not suffer noticeable performance degradation because
the absolute difference between the reserved bandwidth and
the achieved bandwidth is relatively small in most periods that
suffered reclaim under-run errors.

MemGuard-BR+SS enables the spare bandwidth sharing
algorithm (Section 5.2) on top of MemGuard-BR. Compared
to Figure 12(a), the tasks in the left side of the figure—i.e.,
task pairs coupled with more memory intensive subject tasks—
show noticeable improvements. This is because after both tasks
(the subject task and the interfering task) collectively consume
the total reserved bandwidth (rmin), the spare bandwidth
sharing mode allows both tasks to continue until the beginning
of the next period, making more progress on both tasks. On
average, the performance is improved by 5.1x for interfering
tasks and by 1.06x for subject tasks, compared to the baseline.

MemGuard-BR+PS enables the proportional sharing mode
(Section 5.3) on top of MemGuard-BR. While it also im-
proves performance of both subject and interfering tasks as in
MemGuard-BR+SS, the average improvement of interfering
tasks is only 4.3x, compared to 5.1x in MemGuard-BR+SS.
On the other hand, the average improvement of subject tasks
is 1.08x, compared to 1.06x in the MemGuard-BR+SS mode.
This is because the proportional sharing mode provides much
less bandwidth to the interfering tasks as it begins a new period
immediately after the guaranteed bandwidth is consumed,
while the spare sharing mode let the interfering task freely
compete with the subject task until the next period begins,
hence achieves more bandwidth.

The differences of the two modes—MemGuard-BR+SS
and MemGuard-BR+PS—can be seen more clearly by in-
vestigating the “High” memory intensity subject tasks and
the corresponding interfering tasks separately as shown in
Figure 13. In all cases, the proportional sharing mode improves
subject tasks’ performance at the cost of reduced interfering
tasks’ performance. Hence, the proportional sharing mode is
useful when we want to prioritize certain cores with more
guaranteed bandwidth reservations over other cores with less
reservations.

Figure 15 compares throughput of four MemGuard modes
(MemGuard-RO, MemGuard-BR, MemGuard-BR+SS, and
MemGuard-BR+PS) and the vanilla kernel without using
MemGuard (Vanilla.) Here we define throughput simply as
the sum of IPCs of each subject task and the interfering

 0

 2

 4

 6

 8

 10

Vanilla

MemGuard-RO

MemGuard-BR+SS

MemGuard-BR+PS

N
o
rm

al
iz

ed
 I

P
C

462.libquantum(Core0@900MB/s)
433.milc(Core1@100MB/s)

410.bwaves(Core2@100MB/s)
470.lbm(Core3@100MB/s)

(a) rmin=1.2GB/s

 0

 2

 4

 6

 8

 10

Vanilla

MemGuard-RO

MemGuard-BR+SS

MemGuard-BR+PS

N
o
rm

al
iz

ed
 I

P
C

462.libquantum(Core0@1800MB/s)
433.milc(Core1@200MB/s)

410.bwaves(Core2@200MB/s)
470.lbm(Core3@200MB/s)

(b) rmin=2.4GB/s

Fig. 16: Isolation and throughput impact of rmin.

task pair. The Y-axis shows the normalized IPC sum (w.r.t.
Vanilla) of each pair of subject tasks and interfering tasks
that represents the system throughput of the pair. Compared to
MemGuard-RO, MemGuard-BR achieves 11% more through-
put on average (geometric mean). Both MemGuard-BR+SS
and MemGuard-BR+PS achieve additional 11% and 9%
improvement respectively. Although Vanilla achieves higher
throughput in general, it does not provide performance iso-
lation while MemGuard provides performance isolation at a
reasonable throughput cost.

7.3 Results on Four Cores

In this experiment, we evaluate MemGuard using all four
cores in our testbed. We use four SPEC benchmarks—
462.libquantum, 433.milc, 410.bwaves, and 470.lbm—each of
which runs on one core in the system.

Because the testbed has two shared LLC caches, each
of which is shared by two cores, we carefully choose the
benchmarks in order to minimize cache storage interference
effect. To this end, we experimentally verify each benchmark
by running it together with one synthetic cache trash task in
both shared and separate LLC configurations; if performance
of the two configurations differ less than 5%, we categorize
the benchmark as LLC insensitive.

Figure 16(a) shows the normalized IPC (w.r.t. MemGuard-
RO where each task is scheduled in isolation) of each
task when all four tasks are co-scheduled using Mem-

11

Guard in three different modes (MemGuard-RO, MemGuard-
BR+SS, and MemGuard-BR+PS) and without using Mem-
Guard (Vanilla). The weight assignment is 9:1:1:1 (for
462.libquantum, 433.milc, 410.bwaves, and 470.lbm respec-
tively) and the rmin is 1.2GB/s. Vanilla is unaware of the
weight assignment. Hence, the high-priority 462.libquantum
on Core 0 is 33% slower than the baseline reservation due
to contentions from other low priority tasks. Although it is
clear that overall throughput is higher in Vanilla, it can-
not provide isolated performance guarantee for one specific
task, in this case 462.libquantum. In contrast, MemGuard-
RO delivers exactly the performance that is promised by each
task’s reserved bandwidth (i.e., baseline) without experiencing
noticeable slowdowns by interferences from co-running tasks.
Hence it can guarantee performance of the high-priority task
(462.libquantum) at the cost of significant slowdowns of low-
priority tasks. MemGuard-BR+SS improves performance of all
tasks beyond their guaranteed performances by sharing best-
effort bandwidth—through bandwidth reclaiming and spare
sharing. This is especially effective for low-priority tasks
as they are improved by 4.07x, 2.55x, 3.02x (433.milc,
410.bwaves, 470.lbm respectively) compared to the baseline.
The high-priority task (462.libquantum) is also improved by
1.13x. MemGuard-BR+PS also improves performance of all
tasks above their guaranteed performances, but different in
that it favors the high-priority task over low-priority tasks:
the high-priority task is improved by 1.31x while low-priority
tasks are improved by 1.34x, 1.27x, and 1.25x. This is because
MemGuard-BR+PS enforces the assigned weight all the time,
by starting a new period immediately when the guaranteed
bandwidth is used, while MemGuard-BR+SS doesn’t between
the time it satisfies the guaranteed bandwidth and the time
when the next period starts (the interval is fixed in MemGuard-
BR+SS).

Figure 16(b) follows the same weight settings but doubles
the rmin value to 2.4GB/s in order to compare its effect
on throughput and performance isolation. Because the rmin

is doubled, each core’s reserved bandwidth is doubled and
the baseline of each task (Y-axis value of 1) is changed
accordingly. Note first that MemGuard-RO does not guarantee
performance isolation anymore as 462.libquantum is 17%
slower than the baseline. It is because the 2.4GB/s bandwidth
can not be guaranteed by the given memory system, causing
additional queuing delay to the 462.libquantum. This is con-
sistent with our finding in Section 7.1. In both MemGuard-
BR+SS and MemGuard-BR+PS, the IPC of 462.libquantum
is further reduced, because other cores can generate more
interference using reclaimed bandwidth that 462.libquantum
donated. On the other hand, both modes achieve higher overall
throughput as they behave very similar to Vanilla. This shows
the trade-off between throughput and performance isolation
when using MemGuard.

7.4 Effect on Soft Real-time Applications

We illustrate the effect of MemGuard for soft real-time ap-
plications using a synthetic soft real-time image processing
benchmark fps. The benchmark processes an array of two HD

images (each image is 32bpp HD data: 1920x1080x4 bytes =
7.9MB) in sequence. It is greedy in the sense that it attempts
to process as quickly as possible.

Figure 17 shows frame-rates of fps instances on our 4-core
system using MemGuard in two different modes (MemGuard-
BR+SS, MemGuard-BR+PS) and without using MemGuard
(Vanilla). The weight assignment is 1:2:4:8 (for Core0,1,2,3 re-
spectively) and the rmin is 1.2GB/s. Vanilla is unaware of the
weight assignment. Hence, all instances show almost identical
frame-rates. MemGuard-BR+SS reserves memory bandwidth
for each core, as long as the total sum of the reservations is
smaller than the guaranteed bandwidth. Therefore the frame-
rates are different depending on the amount of reservations.
However, the ratio of frame-rates is different from the ratio
of weight assignments because the total reserved bandwidth is
small compared to the peak memory bandwidth; after all cores
are served their reserved bandwidths, they equally compete
for the remaining bandwidth. On the other hand, the frame-
rate ratios in MemGuard-BR+PS are in line with the ratios of
assigned weights. This is because MemGuard-BR+PS enforces
the given bandwidth assignment all the time (by starting a
new period immediately after cores use the rmin), resulting in
better prioritization over MemGuard-BR+SS.

8 RELATED WORK

Resource reservation has been well studied especially in the
context of CPU scheduling [32], [1] and has been applied
to other resources such as GPU [20], [21]. The basic idea
is that each task or a group of tasks reserves a fraction
of the processor’s available bandwidth in order to provide
temporal isolation. Abeni and Buttazzo proposed Constant
Bandwidth Server (CBS) [1] that implements reservation by
scheduling deadlines under EDF scheduler. Based on CBS,
many researchers proposed reclaiming policies in order to
improve average case performance of reservation schedulers
[22], [10], [9], [23]. These reclaiming approaches are based
on the knowledge of task information (such as period) and the
exact amount of extra budget. While our work is inspired by
these works, we apply reservation and reclaiming on memory
bandwidth which is very different from CPU bandwidth in
several key ways.

DRAM bandwidth is different from CPU bandwidth in the
sense that the attainable capacity (bandwidth) varies signifi-
cantly while it is a constant in case of CPU bandwidth. Unlike
CPU, a DRAM chip consists of multiple resources called
banks that can be accessed in parallel and each bank has
its own state that affects required access time for the bank.
Therefore, the maximum capacity (bandwidth) of DRAM
fluctuates depending on the access pattern and the bank states.
Some DRAM controllers, specially designed for predictable
memory performance, solve this problem by forcing to access
all DRAM banks—in a pipelined manner—at a time for
each memory transaction, thereby eliminating the capacity
variation [30], [3], [31]. Some of the DRAM controllers also
provide native support for bandwidth regulation [3], [31],
which allow them to analyze DRAM performance based on
network calculus [12] as shown in [38]. While they may be

12

 0
 100
 200
 300
 400
 500
 600
 700
 800

 2 4 6 8 10 12 14 16 18 20

F
ra

m
e
s/

se
c
.

Time(sec)

Core0
Core1
Core2
Core3

(a) Vanilla

 0
 100
 200
 300
 400
 500
 600
 700
 800

 2 4 6 8 10 12 14 16 18 20

F
ra

m
e
s/

se
c
.

Time(sec)

Core0
Core1
Core2
Core3

(b) MemGuard-BR+SS

 0
 100
 200
 300
 400
 500
 600
 700
 800

 2 4 6 8 10 12 14 16 18 20

F
ra

m
e
s/

se
c
.

Time(sec)

Core0
Core1
Core2
Core3

(c) MemGuard-BR+PS

Fig. 17: Frame-rate comparison. The weight assignment is 1:2:4:8 (Core0,1,2,3) and rmin = 1.2GB/s for (b) and (c).

acceptable for specialized hardware architectures such as the
TM3270 media processor [40], however, they require a very
large transaction length to accommodate many DRAM banks.
For example, a typical modern DRAM module consists of
8 to 16 banks to achieve high throughput. To support such
a DRAM module, the DRAM controllers in [3], [31] would
need a transaction length of 1KB (or 512B, depending on con-
figurations), which is too big for most general purpose CPU
architectures. Therefore, these predictable DRAM controller
designs are not available in most COTS DRAM controllers.

Because COTS DRAM controllers typically do not provide
any intrinsic mechanisms to provide memory performance
guarantees, our main focus is to develop software (OS)
mechanisms to provide better performance isolation on COTS
systems. OS level memory access control was first discussed in
literature by Bellosa [7]. Similar to our work, this work also
proposed a software mechanism to prevent excess memory
bandwidth usage of each core, by adjusting the number of
idle loops in the TLB miss handler. There are, however, three
major limitations, which are addressed in this work: First,
it defines the maximum reservable bandwidth in an ad-hoc
manner—i.e., 0.9 times of the measured bandwidth of the
Stream benchmark [24]—that can be violated depending on
memory access patterns as shown in Section 2. Second, it
does not address the problem of wasted memory bandwidth
in case cores do not use their reserved bandwidth. Finally,
its bandwidth control is “soft” in the sense that it allows
cores to overuse their reserved bandwidth until a feed-back
control mechanism stabilizes the cores’ bandwidth usages by
increasing/decreasing the idle loops in the TLB handler. It is,
therefore, not appropriate to apply the technique for hard real-
time applications.

In contrast, our work clearly defines the maximum reserv-
able bandwidth, the guaranteed bandwidth (Section 4), based
on the understanding of DRAM architecture; can provide
“hard” bandwidth reservation for hard real-time applications;
and provides reclaiming and sharing mechanisms to better
utilize the memory bandwidth while still providing each core’s
reserved bandwidth. A recent work also presented a similar
memory bandwidth reservation system focusing on individual
server oriented reservation, in contrast to our core oriented
reservation approach [16]. However, they do not address the
problem of wasted bandwidth, which is addressed in this work.

WCET analysis in multicore is difficult because service
times of the shared resources depend on their internal states
and access histories. Although there is an analytic method
to deal with history dependent service times in unicore [5],
such an approach may not be applicable in multicore because
multiple cores can concurrently access the shared resources
and software do not have enough control on accessing and
scheduling of the shared resources.

We believe the basic reservation mechanism of MemGuard
can be used with other multicore WCET analysis techniques
([34], [6]) as shown in our previous work [42] in the context
of mixed critical systems. A tighter WCET analysis technique,
exploiting MemGuard’s globally synchronized regulation, can
be found in [41]. The focus of this paper is, however, not
on the WCET analysis but on the development of practical
reservation mechanisms that can benefit not only real-time
applications but also non real-time applications.

9 CONCLUSION

We have presented MemGuard, a memory bandwidth reser-
vation system, for supporting efficient memory performance
isolation on multicore platforms. It decomposes memory band-
width as two parts: guaranteed bandwidth and best effort
bandwidth. Memory bandwidth reservation is provided for
the guaranteed part for achieving performance isolation. An
efficient reclaiming mechanism is proposed for effectively
utilizing the guaranteed bandwidth. It further improves system
throughput by sharing best effort bandwidth after each core
satisfies its guaranteed bandwidth. It has been implemented
in Linux kernel and evaluated on a real multicore hardware
platform.

Our evaluation with SPEC2006 benchmarks showed that
MemGuard is able to provide memory performance isolation
under heavy memory intensive workloads. It also showed
that the proposed reclaiming and sharing algorithms improve
overall throughput compared to a reservation only system
under time-varying memory workloads. As future works, we
plan to apply our work on a 8-core P4080 platform [14],
together with our industrial sponsor. We will also continue to
reduce implementation overhead to accommodate more fine-
grained real-time tasks.

13

ACKNOWLEDGEMENTS

This research is supported in part by ONR N00014-12-1-
0046, Lockheed Martin 2009-00524, Rockwell Collins RPS#6
45038, NSERC DG 402369-2011, NSF CNS-1302563, and
NSF CNS-1219064. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the
ONR, NSERC, NSF or the supporting companies.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Real-Time Systems Symposium (RTSS), 1998.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Real-Time Systems Symposium
(RTSS), 2002.

[3] B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable
SDRAM memory controller. In Hardware/software codesign and system
synthesis (CODES+ISSS), pages 251–256. ACM, 2007.

[4] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time
scheduling using credit-controlled static-priority arbitration. In Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pages
3–14. IEEE, 2008.

[5] B. Andersson, S. Chaki, D. de Niz, B. Dougherty, R. Kegley, and
J. White. Non-preemptive scheduling with history-dependent execution
time. In Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[6] B. Andersson, A. Easwaran, and J. Lee. Finding an upper bound on
the increase in execution time due to contention on the memory bus in
cots-based multicore systems. SIGBED Review, 7(1):4, 2010.

[7] F. Bellosa. Process cruise control: Throttling memory access in a soft
real-time environment. Technical Report TR-I4-97-02, University of
Erlangen, Germany, July 1997.

[8] B. Bhat and F. Mueller. Making DRAM refresh predictable. Real-Time
Systems, 47(5):430–453, 2011.

[9] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun
control. In Real-Time Systems Symposium (RTSS). IEEE, 2000.

[10] M. Caccamo, G. Buttazzo, and D. Thomas. Efficient reclaiming in
reservation-based real-time systems. In Real-Time Systems Symposium
(RTSS), pages 198–213. IEEE, 2005.

[11] F. Cerqueira, M. Vanga, and B. Brandenburg. Scaling Global Scheduling
with Message Passing. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014.

[12] R. Cruz. A calculus for network delay. I. Network elements in isolation.
Transactions on Information Theory, 37(1):114–131, 1991.

[13] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari. A robust mechanism
for adaptive scheduling of multimedia applications. ACM Trans. Embed.
Comput. Syst. (TECS), 10(4):46:1–46:24, Nov. 2011.

[14] Freescale. P4080: QorIQ P4080/P4040/P4081 Communications Pro-
cessors with Data Path, 2014.

[15] J. Henning. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[16] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjödin. The Multi-
Resource Server for Predictable Execution on Multi-core Platforms.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, April 2014.

[17] Intel. Intel ®64 and IA-32 Architectures Optimization Reference Manual,
April 2012.

[18] Intel. Intel®64 and IA-32 Architectures Software Developer Manuals,
2012.

[19] A. Jaleel. Memory Characterization of Workloads Using
Instrumentation-Driven Simulation, 2010.

[20] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
Sharing in GPU-accelerated Windowing Systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[21] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Time-
Graph: GPU Scheduling for Real-Time Multi-Tasking Environments. In
USENIX Annual Technical Conference (ATC). USENIX, 2011.

[22] G. Lipari and S. Baruah. Greedy reclaimation of unused bandwidth
in constant bandwidth servers. In Euromicro Conference on Real-Time
Systems (ECRTS). IEEE, 2000.

[23] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS: A new
reclaiming algorithm for server-based real-time systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2004.

[24] J. McCalpin. Memory bandwidth and machine balance in current high
performance computers. IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, December 1995.

[25] L. McVoy, C. Staelin, et al. Lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference. USENIX, 1996.

[26] Micron Technology, Inc. 1Gb DDR2 SDRAM: MT47H128M8, Rev. Z
03/14 EN, 2003.

[27] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In International Symposium on Microarchitec-
ture (MICRO), pages 146–160. IEEE, 2007.

[28] C. Natarajan, B. Christenson, and F. Briggs. A study of performance
impact of memory controller features in multi-processor server environ-
ment. In Proceedings of the 3rd workshop on Memory performance
issues, pages 80–87. ACM, 2004.

[29] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair queuing memory
systems. In International Symposium on Microarchitecture (MICRO),
pages 208–222. IEEE, 2006.

[30] M. Paolieri, E. Quiñones, J. Cazorla, and M. Valero. An analyzable
memory controller for hard real-time cmps. Embedded Systems Letters,
IEEE, 1(4):86–90, 2009.

[31] M. Pérez, C. Rutten, L. Steffens, J. van Eijndhoven, and P. Stravers. Re-
source reservations in shared-memory multiprocessor socs. In Dynamic
and Robust Streaming in and between Connected Consumer-Electronic
Devices, pages 109–137. Springer, 2005.

[32] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels:
A resource-centric approach to real-time and multimedia systems. In
Multimedia Computing and Networking (MNCN), January 1998.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memory
access scheduling. In ACM SIGARCH Computer Architecture News,
volume 28, pages 128–138. ACM, 2000.

[34] S. Schliecker and R. Ernst. Real-time performance analysis of multipro-
cessor systems with shared memory. ACM Transactions on Embedded
Computing Systems (TECS), 10(2):22, 2010.

[35] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Real-Time Systems Symposium (RTSS). IEEE, 2003.

[36] D. Skourtis, S. Kato, and S. Brandt. QBox: Guaranteeing I/O perfor-
mance on black box storage systems. In High-Performance Parallel and
Distributed Computing (HPDC), pages 73–84. ACM, 2012.

[37] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[38] L. Steffens, M. Agarwal, and P. Wolf. Real-time analysis for memory
access in media processing SOCs: A practical approach. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 255–265. IEEE,
2008.

[39] P. Valente and F. Checconi. High throughput disk scheduling with fair
bandwidth distribution. Transactions on Computers, 59(9), 2010.

[40] J. Waerdt et al. The TM3270 media-processor. In International
Symposium on Microarchitecture (MICRO), pages 331–342. IEEE, 2005.

[41] G. Yao, H. Yun, Z. Wu, R. Pellizzoni, M. Caccamo, and L. Sha.
Schedulability Analysis for Memory Bandwidth Regulated Multicore
Real-Time Systems. Transactions on Computers, December 2014
(accepted).

[42] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Access
Control in Multiprocessor for Real-time Systems with Mixed Criticality.
In Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[43] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013.

[44] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
core Platforms. Technical report, University of Kansas, 2014.

14

	Introduction
	Problems of Shared Memory in Multi-core Systems
	MemGuard Overview
	Guaranteed Bandwidth Management
	Guaranteed Memory Bandwidth
	Memory Bandwidth Reservation
	Memory Bandwidth Reclaiming
	Example

	Best-effort Bandwidth Management
	Best-effort Memory Bandwidth
	Spare Sharing
	Proportional Sharing

	Evaluation Setup
	Evaluation platform
	Implementation Details and Overhead Analysis

	Evaluation Results and Analysis
	Performance Isolation Effect of Reservation
	Effect of Reclaiming and Sharing
	Results on Four Cores
	Effect on Soft Real-time Applications

	Related Work
	Conclusion
	References

