Performance Isolation for Real-Time Applications on Multicore
Platforms using PALLOC and MemGuard

Santosh Gondi, Siddhartha Biswas, Heechul Yun
The University of Kansas
2335 Irving Hill Road, Lawrence, KS
{santoshg, sid.biswas, heechul.yun}@ku.edu

Abstract

Performance isolation among multiple programs on a multicore platform is difficult to achieve due to
contention in the shared architectural hardware resources such as shared caches and DRAM. In this paper,
we present a case study—using WebRTC, an open source real-time video conferencing software developed
by Google—that compares state-of-art techniques to achieve performance isolation. We first investigate
the performance variability of WebRTC in the presence of memory intensive co-running applications.
We then compare CPUSET (baseline), PALLOC (DRAM bank partitioning technique), and MemGuard
(memory bandwidth reservation technique) in terms of performance isolation of the WebRTC application

as well as the overall throughput of the entire system.

In this study, we found that PALLOC achieves moderate real-time performance improvements without
significantly sacrificing the overall throughput. On the other hand, we found that MemGuard can be
configured to achieve near perfect performance isolation for real-time applications, albeit at the cost of

significantly reduced throughput for co-runners.

1 Introduction

Performance isolation is important for real-time ap-
plications such as real-time video conferencing soft-
ware. On modern multi-core platforms, however, it
is increasingly difficult to achieve because contention
in shared hardware resources can cause high perfor-
mance variations.

The CPUSET subsystem of Linux CGROUP is
a well-known isolation mechanism which provides
a basic core-level partitioning capability by confin-
ing applications in a given CGROUP partition to a
subset of cores. Unfortunately, however, core level
partitioning does not provide sufficient performance
isolation when the shared memory resources—LLC
capacity, DRAM banks, and memory bandwidth—
become bottlenecks.

Recently, two new OS level performance isola-
tion mechanisms, PALLOC [1] and MemGuard [2],
have been proposed to provide better performance
isolation for the shared memory resources on COTS

multi-core platforms. PALLOC is a DRAM bank
aware memory allocator, which enables us to parti-
tion banks among cores to avoid bank sharing. Mem-
Guard is a kernel level memory bandwidth reserva-
tion system which provides a minimum bandwidth
guarantee to each core.

In this study, we investigate the impact of these
performance isolation mechanisms using a real world
real-time video conferencing software WebRTC. We-
bRTC is an open-source, real-time video conferenc-
ing software developed by Google, which provides
real-time video communication between browsers
without having to install any plug-ins. Our goal is
to provide a high degree of performance isolation to
WebRTC on a commodity multi-core platform in a
multi-programmed environment. We first investigate
the performance variability of WebRTC in the pres-
ence of memory intensive co-running applications.
We then compare CPUSET (baseline), PALLOC and
MemGuard in terms of performance isolation of the
WebRTC application as well as the overall through-
put of the entire system.

With CPUSET mechanism alone, performance
of WebRTC, indirectly measured via achieved mem-
ory bandwidth, is reduced by 27%, leading to 30%
drop in the frame rate and 8 times increase in the
RTT value. With PALLOC (in conjunction with
the CPUSET), we achieve 10% increase in memory
bandwidth, which leads to 30% improvement in RT'T
value compared to CPUSET isolation alone while ex-
periencing only 15% performance reduction in the
co-running LBMs. With MemGuard, we evaluated
the performance impact of reservation-only, reclaim,
and spare bandwidth strategies, and with different
regulation period; we are able to come up with a
configuration which completely eliminates the inter-
ference to WebRTC and Xserver from co-running ap-
plications.

In this study, we found that PALLOC achieves
moderate real-time performance improvements with-
out significantly sacrificing the overall throughput.
On the other hand, we found that MemGuard can be
configured to achieve near perfect performance isola-
tion for real-time applications, albeit at the cost of a
varying degree of reduced throughput for co-runners.

The remaining sections are organized as follows:
Section 2 reviews the background on different isola-
tion mechanisms on multicore platforms. Section 3
discusses the characteristics of WebRTC. Section 4
describes the experimental setup. Results and anal-
ysis are presented in Section 5. We discuss the limi-
tations in Section 6. Paper concludes in Section 7.

2 Background

Most of the modern computers and hand-held de-
vices are multi-core, multi-programmed systems.
The applications running on these platforms experi-
ence a high degree of performance variation, because
of contention for shared resources, such as LLC,
memory banks, memory bandwidth, etc.

A general purpose multicore system runs a num-
ber of tasks at a time. If a memory intensive appli-
cation is considered, its performance will depend not
only on its own memory access pattern and system
memory size and, but also with the memory access
patterns of other co-running applications, and the
state of DRAM. This problem is more obvious in
real-time systems which can have only a small mem-
ory and that must be shared with all application
running in that system. A similar situation arises
for cache-intensive applications in multicore systems.
In multicore systems, usually Level 3 cache is shared
among different cores. So an application’s perfor-

mance will depend on both cache size and access
pattern of shared cache by different processes.
These interference due to shared access of
resources—memory, cache, and system bus—are
critically important in designing real time systems
which uses multicore processors. The following sub-
sections review some of the performance isolation
mechanisms for multi-core platforms.

2.1 CPUSET

Linux operating system provides a kernel level fea-
ture called, CGROUP (control group), to allocate
system resources such as system memory, CPU cores,
network bandwidth, or combinations of these re-
sources to a user defined group of processes in the
system. A user creates these groups following some
user defined hierarchical structure to distribute the
system resources among these groups so that the user
can have proper control over managing system re-
sources and to increase the performance of a selec-
tive group or overall performance improvement of the
system.

Among several subsystems provided by control
groups, CPUSET subsystem enables the user to as-
sign individual CPU cores and memory nodes selec-
tively to a particular group. For example, the pa-
rameter, cpuset.cpus, can be used to specify a CPU,
which will be used by a particular task group, in
control group virtual file system.

2.2 PALLOC

In multicore systems, DRAM is an important shared
resource. Inside DRAM, there are multiple memory
units, called banks, which can be accessed in parallel
[1]. Each bank consists of multiple rows for storing
data which must be accessed sequentially. Unfor-
tunately, modern operating systems do not consider
banks when allocating memory and considers whole
DRAM as a single unit. As a result of this, data
are stored in multiple banks in some scattered way.
When multiple cores need to access these scattered
data among multiple banks, performances of appli-
cations depend heavily on the location of these data.
For example, if multiple cores executing different ap-
plications whose data is stored in same bank, must
access that bank sequentially to fetch data, causing
huge delay in the memory access, leading to degra-
dation in the application’s performance. Apart from
this, memory controllers are also configured to inter-
leave banks to improve bank level parallelism which
makes the probability of sharing banks by different
applications higher.

PALLOC is a DRAM bank aware memory allo-
cator which is able to allocate memory to a particu-
lar bank. Using PALLOC, it is possible to partition
DRAM Banks which can be assigned to individual
cores, there-by reducing the interference caused by
multiple core accessing same banks. It is also pos-
sible to achieve cache partitioning as side effect of
bank partitioning, since the physical address bits de-
termining memory banks and cache lines may share
some bits. In most multicore platforms L3 cache is
shared using same physical address. Because higher
level cache is shared among multiple cores, interfer-
ence occurs when different cores try to access higher
level cache at the same time. In our case study, we
collected the performance of WebRTC using PAL-
LOC, various bank and shared cache partitioning
configurations, and compared the performance with
other mechanisms.

2.3 MemGuard

Apart from sharing the system DRAM and shared
cache, memory bus is also an important shared re-
source. MemGuard is a memory bandwidth reser-
vation system, which is able to provide guaranteed
as well as best effort memory bandwidth service.
The guaranteed bandwidth is the minimum reserved
bandwidth ensured for each core, whereas, in the
best effort mode, reclaiming and proportional shar-
ing are supported. When reclaiming is enabled, an
EWMA (estimated weighted moving average) func-
tion is used to predict the memory bandwidth re-
quirement of each core, and its memory consump-
tion limit is set to the estimated value. The addi-
tional bandwidth donated by a core is utilized by
other cores as needed. This mechanism is useful
with applications whose memory consumption pat-
tern is bursty or does not follow any pattern. In
the spare sharing mode, the bandwidth allocation
period is restarted after each core consumes its al-
located quota. This helps in improving the overall
bandwidth utilization of the system.

3 Case Study

Real-time systems are generally classified as hard
and soft real-time systems. Hard real-time systems
have strict deadlines. Such as, nuclear fusion con-
troller, robot performing surgery, etc. Missing such
deadlines could be catastrophic. Whereas, in soft
real-time systems, meeting the deadline is impor-
tant, but missing the same is not that catastrophic.
Video games, watching Netflix, video conferencing,

etc. fall in this category. WebRT'C, an open source,
video conferencing solution, a soft real-time system,
is considered for this case study. Because of resource
contention on modern multi-core, multi user system,
many soft real-time applications like WebRTC can-
not meet the deadline in general purpose operating
systems, such as, Linux. We first study the char-
acteristics of WebRTC in conjunction with Xserver,
by observing the memory access pattern in each case.
Then, benefits and drawbacks of using PALLOC, and
MemGuard are evaluated.

3.1 WebRTC

Figure 1 shows the number of cache-misses per ms,
for one second duration. The mean memory band-
width consumption is 342 MB/s, with peak value of
1247 MB/s. The bandwidth consumption is consis-
tently bursty. The number of bursts in one second
correlates to the video frame rate of 30 FPS.

100000

web ——

80000 -

60000 -

40000 |

cache-misses

“ T th\

il wwu

FAH »

0
2000 2200 2400 2600 2800 3000
Time[ms]

20000 r

pr W

u ' q‘w n

»A% m

FIGURE 1: Memory access pattern of We-
bRTC application

3.2 X11

Similar to WebRTC, Xserver exhibits burst memory
consumption as shown in the figure 2. Since Xserver
is the rendering front end of WebRTC streams, it
sort of follows the same pattern as WebRTC. There
is aggregation of 2 memory spikes in Xserver com-
pared to WebRTC, probably because of the way two
processes interact. The mean memory consumption
of Xserver is 365 MB/s, with the peak value of 2865

MB/s.

100000

e —
80000 |
g 0000
€
£ ' |
8 40000 | | |
20000 | ‘ L \ }
OMU L)L LLJ_, LJLLgtW
2000 2200 2400 2600 2800 3000
Time[ms]
FIGURE 2: Memory access pattern of X11

Resource reservation based on the mean require-
ments will not be able to provide sufficient isola-
tion from co running application during bursty mem-
ory consumption. However, the reservation based
on peak requirements will not be able to utilize the
spare memory bandwidth during non-burst phases.
Isolation mechanisms which dynamically reserves the
memory based on the run-time requirement is more
suitable for bursty memory consumers. By under-
standing the memory access pattern of WebRTC and
X11, we are able to configure the isolation mecha-
nisms to achieve near perfect performance isolation
from other co-running tasks. In this case study, we
have explored the CPUSET, PALLOC, and Mem-
Guard mechanisms to provide performance isolation
to WebRTC.

4 Experiment Setup

Figure 3 shows the experimental setup. Both ma-
chines in the experiment have identical configura-
tion. Each machine is equipped with a quad core
Intel Xeon processor, 2.8 GHz CPU, 8MB 16-way
shared L3 cache, and 256KB private L2 cache. Each
platform has 4 GB DDR DIMM memory with 16
banks, and an integrated memory controller. The
WebRTC and Xserver performance, and effectiveness
of isolation mechanisms is measured on one machine,
while, the browser on other machine simply serves
as the other end point of WebRTC.

In each experiment, 3 Linux cgroups are created,
namely, WebRTC, Xserver, and CoRun. Cpu cores
0,1,2-3 are assigned to WebRTC, Xserver, and
CoRun control groups, respectively. The chrome-
browser running WebRTC is assigned to WebRTC
group, Xserver process is assigned to Xserver group,

and Ibm benchmarks from SPEC2006 are assigned to
CoRun group. Memory bank partitioning is achieved
by assigning banks 0-3 to WebRTC, 4-7 to Xserver,
and 8-15 CoRun groups. Similarly, bank and cache
partitioning is achieved by assigning 0 to WebRTC,
1 to Xserver, and 2-3 to CoRun groups. Since there
are 2 bits shared between bank and cache selection
bits on address line [1], there are only 4 available
partitions for bank+cache partitioning.

¢ To consistently repeat the experiments, a
v412loopback device is used as a virtual camera,
and foreman YUV sequence is used to generate a
repeatable sequence of video frames [4]. The Java
script code in application is modified to support 4
MB/s bandwidth in both directions, instead of de-
fault 2 MB/s.

The two hosts in the experiment are connected
through a dedicated gigabit switch. After initial
handshake through a local signaling server, there is
direct point to point connection between the two
communicating hosts while the WebRTC session is
going on. The end to end RTT is of the order of
2 ms. Since there is no other cross traffic through
the switch, the performance degradation observed
in WebRTC is completely because of resource con-
tention in the end hosts, rather than the network
itself.

Host 1 Host 2

C
Traffic RTT Traffic | Cache P [w)
shaper shaper | DRAM WebRTC
U

FIGURE 3: FEzperiment setup

5 Results and Analysis

In this section we present the results and analysis of
different performance isolation mechanisms.

5.1 CPUSET and PALLOC results

Figures 4 to 8 shows the memory bandwidth achieved
by WebRTC, Xserver, and co-running LBM tasks in
different settings. Each value is an average of 3 it-
erations. Figures 4 and 5 shows the baseline per-
formance with cpuset, bank, and bank-+cache parti-

tioning. Abbreviations, CPUSET, PB, and PB+PC
respectively correspond to these schemes. With cpu
core partitioning alone, The Xserver’s memory band-
width drops to 92 MB/s from 365 MB/s in solo run.
At the same time, WebRTC’s bandwidth drops to
250 MB/s from 342 MB/s in solo run. Two co-
running LBM tasks achieve close to 1500 MB /s band-
width as shown in figure 5. With bank partitioning
(PB), Xserver WebRTC gain around 20 MB/s more
bandwidth, albeit, the co-running lbm tasks lose
around 200 MB/s of bandwidth. This result shows
that, though bank partitioning is able to resolve
some bank conflicts, it is not sufficient to provide
complete isolation to WebRTC and Xserver, as ma-
jor contention seems to be arising from memory bus
bandwidth. The drop in co-runner’s performance is
because of constraining memory allocation to these
tasks to specific banks, hence reducing the over-
all availability of memory. With bank+cache par-
titioning (PB+PC), WebRT'C performance improves
marginally as the IPC increases, while the bandwidth
reduces, indicating that some of its cache conflicts
got eased. But, it does not provide any additional
gains for WebRTC and Xserver combined. Also, it
further reduces the performance of co-running ap-
plications by around 70 MB/s. The result confirms
that, cache is not the main contentious resource on
this platform, rather, the bus bandwidth is. The
further reduction in co-running lbm’s performance is
because of constrained cache size leading to increased
cache evictions.

[X11 = WebRTC o

300

Memory BW [MB/g]

FIGURE 4: Memory BW of X11 and We-
bRTC with cpuset, PALLOC, and cache par-
tition

[corun-l mmmmm corun-2 D |

1600
1400
1200
1000
800
600
400
200

Memory BW [MB/s]

FIGURE 5: Memory BW of Co-runners
with cpuset, PALLOC, and cache partition

5.2 MemGuard results

Figures 6 to 8 shows the achieved memory band-
width for different MemGuard settings. The abbre-
viations: MG-RO, MG-PS, MG-BR, and MG-BR-PS
correspond to MemGuard with reservation only, pro-
portional sharing, bandwidth reclaiming, and band-
width reclaiming with proportional sharing. Figures
6 to 7 are with 1 ms regulation period and figure
8 is for 10 ms regulation period. With allocation
of 600, 600, 100, and 100 MB/s to cores 0-3 (Fig-
ure 6), WebRTC and Xserver get the sufficient share
of bandwidth. Because, both WebRTC and Xserver
are bursty and LBM are memory intensive, band-
width reclaim increases the LBM performance be-
yond the allocation quota for co runner applications,
by reclaiming underutilized bandwidth from Xserver
and WebRTC in many bandwidth regulation periods.
The highest performance is observed for with both
reclaim and proportional sharing, because of possi-
bility of shortened regulation periods due to propor-
tional sharing.

X11 o
WebRTC mmmmm

corun-1 e
COrun-2

1600
1400
1200
1000
800
600
400
200 L

Memory BW [MB/s]

S by b, b, 4
Ve Q. B, B, @
&R G K

FIGURE 6: MemGuard with 600 600 100
100 allocation and 1 ms period

With allocation of 400, 400, 300, and 300 MB/s
to cores 0-3 (Figure 7), the gains for co-runner due to
bandwidth reclaiming is minimal since the difference
in allocation is small. The combined gains of reclaim-
ing and proportional sharing is high, because, re-
claim helps to complete the bandwidth quota for each
task quickly, and underutilized regulation periods are
shortened because of proportional sharing. Overall
the bandwidth of WebRTC and Xserver is lower be-
cause of possibility of memory controller queue being
congested, due to more aggressive memory consump-
tion by Ibm co-runners.

X1] =mmmm corun-1 e—
WebRTC mwwmms corun-2 memsms
1600
1400
@
o 1200
= 1000
=
m
2
5
=

FIGURE 7: MemGuard with 400 400 300
300 allocation and 1 ms period

Figure 8 shows the results with 10 ms regula-
tion period of MemGuard. In all cases, bandwidth
achieved by co-running applications is same or higher
compared to 1 ms period. With reclaim and propor-
tional sharing, the higher memory consumption by
co-runners causes unwanted side effect of slightly re-
duced bandwidth for WebRTC and Xserver. Again,
this is possibly because of increased queuing at mem-
ory controller. We are currently investigating this
issue to determine the exact cause of this behav-
ior. The overall throughput is higher because of the
reduced overhead of regulation and more time for
aggregation of memory consumption. It should be
noted that higher regulation period has negative side
effect of increasing response time for applications.

X11 o corun-1 mem—
WebRTC mwmwm corun-2 e
1600
1400
T 1200
= 1000
2 800
2 600
5 400
=
200 |
C Y T, Y, Y
%% B R % K
iy
FIGURE 8: MemGuard with 400 400 300

300 allocation and 10 ms period

5.3 WebRTC performance

Table 1 shows the average RTT, frame rate, and
sent media bandwidth of WebRTC, while running
alongside the co-runners, for different isolation mech-
anisms discussed in this paper. With CPUSET parti-
tioning alone the RTT increases by 8 times compared
to solo run and frame-rate and bandwidth reduces by
more than 30%. With bank (PB) and bank+cache
(PB+PC) partitioning, the RTT and media band-
width improves by 20%. MemGuard (MG) configu-
ration achieves nearly perfect isolation by producing
RTT, frame-rate, and bandwidth figures similar to
the solo run. WebRTC utilizes GCC (google conges-
tion control) [4] algorithm to dynamically adjust the
encoding bit rate to the available link bandwidth.
Since, in our experimental setup there is no network
congestion between two WebRTC hosts, the video
quality variation, quantified by frame rate and me-
dia bandwidth together, is solely determined by the
resource contention on the end host.

RTT(ms) | FR(f/s) | BW(KB/s)
CPUSET 17.20 21.34 2917.85
PB 12.62 21.34 3407.67
PB+PC 11.28 20.85 3594.00
MG 2.24 29.98 4019.16
Solo 1.85 30.00 4022.33
TABLE 1: Average RTT, Frame-rate, and
Bandwidth

6 Discussion

Average bandwidth and bandwidth access pattern
are important in determining the appropriate isola-

tion mechanism, in-order to provide perfect perfor-
mance isolation for the real-time applications. In our
case study, we could find the memory access pattern
of WebRTC and X11 tasks using system logs from
MemGuard module. This has helped us in appropri-
ately configuring the MemGuard to achieve our ob-
jectives. However, it may be difficult to dynamically
determine the memory requirements of an applica-
tion so as to use it as input to the memory reservation
system. We plan to work on building a mechanism
for applications to specify the memory requirements,
and use it for memory bandwidth reservation.

Also, in our case study, the X11 does not use hard-
ware acceleration. Since the present day devices
in all form factors are using GPU acceleration, we
would like to evaluate the effectiveness and side ef-
fects of different performance isolation schemes, with
GPU acceleration enabled.

7 Conclusions

Determinism is cornerstone of real-time systems.
But, contention for shared resources on multi-core
systems makes it difficult to achieve deterministic
performance. In our case study, we verified the ef-
fects of resource contention on WebRTC on a general
purpose multi-core platform. The basic CPU core
partitioning is not sufficient, because, the LL3 cache,
memory bus, and memory banks are still shared by
the cores. Bank, and cache level partitioning improve
the performance of WebRTC to some extent, with-
out significantly harming the co-runner performance.
Since the WebRT'C (and hence the X11) memory de-
mand is bursty, a strong resource reservation scheme

was necessary to completely isolate the real-time per-
formance. But, strict reservation had a side effect of
significantly reducing the performance of co-runner
application. By understanding the memory access
pattern of WebRTC, we were able to device a config-
uration of MemGuard with suitable memory band-
width division, spare bandwidth utilization and re-
claim policy, to achieve the best real-time perfor-
mance and higher system throughput.

References

[1] PALLOC: DRAM Bank-Aware Memory Allo-
cator for Performance Isolation on Multicore
Platforms, Heechul Yun, Renato, Zheng-Pei
Wu, Rodolfo Pellizzoni, 2014, IEEE INTL. CON-
FERENCE ON REAL-TIME AND EMBEDDED
TECHNOLOGY AND APPLICATIONS SYMPOSIUM
(RTAS)

[2] MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in
Multi-core Platforms, Heechul Yun, Yao Gang,
Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha, April 2013,REAL-TIME AND EMBEDDED
TECHNOLOGY AND APPLICATIONS SYMPOSIUM
(RTAS)

[3] http://www.webrtc.org/

[4] Experimental Investigation of the Google Con-
gestion Control for Real-Time Flows, Luca
De Cicco, Gaetano Carlucci, Saverio Mascolo,
2013, FHMN ’13 PROCEEDINGS OF THE 2013
ACM SIGCOMM WORKSHOP ON FUTURE
HUMAN-CENTRIC MULTIMEDIA NETWORKING

