MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in
Multi-core Platforms

Heechul Yun!, Gang Yao¥, Rodolfo Pellizzoni*, Marco Caccamo?, Lui Shat
! University of Illinois at Urbana-Champaign, USA. {heechul,gangyao,mcaccamo,lrs} @illinois.edu
* University of Waterloo, Canada. rpellizz@uwaterloo.ca

Abstract—Memory bandwidth in modern multi-core platforms
is highly variable for many reasons and is a big challenge
in designing real-time systems as applications are increasingly
becoming more memory intensive. In this work, we proposed,
designed, and implemented an efficient memory bandwidth reser-
vation system, that we call MemGuard. MemGuard distinguishes
memory bandwidth as two parts: guaranteed and best effort. It
provides bandwidth reservation for the guaranteed bandwidth
for temporal isolation, with efficient reclaiming to maximally
utilize the reserved bandwidth. It further improves performance
by exploiting the best effort bandwidth after satisfying each core’s
reserved bandwidth. MemGuard is evaluated with SPEC2006
benchmarks on a real hardware platform, and the results
demonstrate that it is able to provide memory performance
isolation with minimal impact on overall throughput.

I. INTRODUCTION

Computing systems are increasingly moving toward multi-
core platforms and their memory subsystem represents a
crucial shared resource. As applications become more memory
intensive and processors include more cores that share the
same memory system, the performance of main memory
becomes more critical for overall system performance.

In a multi-core system, the processing time of a memory
request is highly variable as it depends on the location of the
access and the state of DRAM chips and the DRAM controller.
There is inter-core dependency as the memory accesses from
one core could also be influenced by requests from other
cores; the DRAM controller commonly employs scheduling
algorithms to re-order requests in order to maximize overall
DRAM throughput [16]. All these factors affect the temporal
predictability of memory intensive real-time applications due
to the high variance of their memory access time. Therefore,
there is an increasing need for memory bandwidth manage-
ment solutions that provide Quality of Service (QoS).

This problem has already been recognized by many re-
searchers, and recent work has focused on designing more
predictable memory controllers. For example, a reservation
based approach has been applied to design a DRAM controller
that supports real-time features [4]. Resource reservation and
reclaiming techniques [17], [1] have been widely studied by
the real-time community to solve the problem of assigning
different fractions of a shared resource in a guaranteed manner
to contending applications. Proposed techniques have been
successfully applied to CPU management [10], [7], [6] and
more recently to GPU management [14], [15].

Unfortunately, existing solutions cannot be easily used for
managing memory bandwidth due to inherent limitations. An
increasing number of real-time systems are built with Com-
mercial Off-The-Shelf (COTS) components, and hardware-
based solutions are not generally possible in such systems.
Moreover, state-of-art resource reservation solutions [7], [8]
cannot be directly applied to the memory system, mostly
because the achievable memory service rate is highly dynamic,
as opposed to the constant service rate in CPU scheduling.

In our previous work, we investigated memory bandwidth
reservation at the operating system level [21]. However, our
existing solution has significant limitations. First of all, it
assumes a constant available memory bandwidth, which is
not true in DRAM-based systems. Second, it can not adapt
to dynamic changes in memory resource usage. Third, while
the work in [21] provides safe performance guarantees for
hard real-time tasks, it makes no effort to optimize mem-
ory throughput for soft real-time tasks, possibly resulting
in severely reduced system performance. To address these
limitations and challenges, we propose a new, efficient and
fine-grained memory bandwidth management system, which
we call MemGuard.

Unlike CPU bandwidth reservation, under MemGuard the
available memory bandwidth can be described as having
two components: guaranteed and best effort. The guaranteed
bandwidth represents the minimum service rate the DRAM
system can provide, while the additionally available bandwidth
is best effort and can not be guaranteed by the system. Memory
bandwidth reservation is based on the guaranteed part in order
to achieve temporal isolation. However, to efficiently utilize all
the guaranteed memory bandwidth, a reclaiming mechanism is
proposed leveraging each core’s usage prediction. The system
throughput is further improved by exploiting the best effort
bandwidth after the guaranteed bandwidth of each core is
satisfied.

Since our reclaiming algorithm is prediction based, mispre-
diction can lead to a situation where guaranteed bandwidth is
not delivered to the core. Therefore, MemGuard is intended to
support mainly soft real-time systems. However, hard real-time
tasks can be accommodated within this resource management
framework by selectively disabling the reclaiming feature.
We evaluate the performance of MemGuard under different
configurations and we present detailed results in the evaluation
section.

Slowdown Ratio

2.2

1.8

1.6

1.4

1.2

AP bEArrPRrErREAEREERAEERRAEEEEREBELEEREDSBERE B
WA= ANV UNLWWHOWONIOORE N REUNWLOEDN— WD
SOANS - ONESORLaRAD =S RUS RO adg
S B p N %0 o 3 =
S 2 5§§Q-=§S§.o§ S B 523% %ai"é’%‘"—‘xﬁé’g"é%q
Ezes5g52%25gs8° Ec =226 QS =28>3228 358
6E2825 'g°58g E2°5RVFEcEzwe3 ES5E
2E2S T S5 = S o 8 g <
E °UY ERS] < ' <
89 Tz

background(470.1bm) 1
foreground(X-axis) SE—_—

~
=
"
o
.

50000
4701m ——

1000 |

30000
20000

10000

0
5000 5200 5400 5600 5800 6000

(a) 470.1bm

50000

505o0pley

40000
30000
20000

0
5000 5200 5400 5600 5800 6000

(c) 450.soplex

10000

0
5000

5200 5400 5600 5800 6000

(b) 462.libquantum

50000

40000

30000

20000

10000

434 zeusmp ——

LWM“L

0
5000

5200 5400 5600 5800 6000

(d) 434.zeusmp

Fig. 1: IPC slowdown of foreground (X-axis) and background
task (470.1bm) on a dual-core configuration

In summary, the contributions of this work are: (1) decom-
posing overall memory bandwidth into a guaranteed and a
best effort components. Then, we experimentally identify the
boundary so we can apply the proposed reservation technique;
(2) designing and implementing (in Linux kernel) an efficient
memory bandwidth reservation system, named MemGuard;
(3) evaluating MemGuard with an extensive set of realistic
SPEC2006 benchmarks [11] and showing its effectiveness on
a real multi-core hardware platform.

The remaining sections are organized as follows: Section
IT describes the challenge of predictability in modern multi-
core systems. Section III describes the details of the proposed
MemGuard approach. Section IV describes the evaluation
platform and the software implementation. Section V presents
the evaluation results. Section VI discusses related work. We
conclude in Section VII.

II. PROBLEMS OF SHARED MEMORY IN MULTI-CORE
SYSTEMS

Many modern embedded systems process vast amount of
data that are collected from various type of sensing devices
such as surveillance cameras. Therefore, many real-time ap-
plications are increasingly becoming more memory bandwidth
intensive. This is especially true in multi-core systems, where
additional cores increase the pressure on the shared memory
hierarchy. Therefore, task execution time is increasingly more
dependent on the way that memory resources are allocated
among cores. To provide performance guarantees, real-time
system have long adopted resource reservation mechanisms.
Our work is also based on this approach but there are diffi-
culties in applying reservation solution in handling memory
bandwidth. To illustrate the problems, we performed two set
of experiments on a real multi-core hardware (described in
Section IV-A).

In the first experiment, we measured Instructions-Per-Cycle
(IPC) for each SPEC2006 benchmark (foreground task) first
running on a core in isolation, and then together with a

Fig. 2: Memory access pattern of four representative
SPEC2006 benchmarks.

memory intensive benchmark (470.lbm) running on a different
core (background task). Figure 1 shows IPC slowdown ratio
(run-alone IPC/co-scheduled IPC) of both foreground and
background tasks; foreground tasks are arranged from the most
memory intensive to the least memory intensive on the X-axis.
As clearly showed in the figure, both the foreground and the
background task suffer slowdown since they are interfering
each other in the memory accesses, which is expected. In-
terestingly, however, most of the times the foreground task
slowdown more than the background task, and the difference
of slowdown factors between that two tasks could be as
large as factor of two (2.2x against 1.2x). Furthermore, note
that the slowdown factor is not necessarily proportional to
how memory intensive the foreground task is. Such effects
are typical in COTS systems due to the characteristics of
modern DRAM controllers [16]: (1) each DRAM chip is
composed of multiple resources, called banks, which can be
accessed in parallel. The precise degree of parallelism can be
extremely difficult to predict, since it depends, among others,
on the memory access patterns of the two tasks, the allocation
of physical addresses in main memory, and the addressing
scheme used by the DRAM controller. (2) Each DRAM bank
itself comprises multiple rows; only one row can be accessed
at a time, and switching row is costly. Therefore, sequential
accesses to the same row are much more efficient that random
accesses to different rows within a bank. DRAM controllers
commonly implement scheduling algorithms that re-order re-
quests depending on the DRAM state and the backlogged
requests inside the DRAM controller, in order to maximize
throughput [16]. 470.1bm tends to suffer less slowdown than
foreground tasks because it is memory intensive and it floods
the request queue in the DRAM controller with sequential
access requests. These results indicate that memory bandwidth
is very different compared to CPU bandwidth, in the sense
that maximum achievable bandwidth is not fixed but highly
variable depending on access location of each memory request
and on the state of DRAM subsystem.

Furthermore, the memory access patterns of tasks can be
highly unpredictable and significantly change over time. Fig-
ure 2 shows the memory access patterns of four benchmarks
from SPEC2006. Each benchmark runs alone and we collected
memory bandwidth usage using hardware Performance Mea-
suring Counters (PMC) between time 5 to 6 seconds, sampled
over every lms time interval. 470.1bm shows highly uniform
access pattern throughout the whole time. On the other hand,
462.libquantum and 450.soplex show highly variable access
pattern, while 434.zeusmp show mixed behavior over time.

When resource usage changes significantly over time, a
static reservation approach results in poor resource utilization
and poor performance. If the resource is reserved with the
maximum request, it would lead to significant waste as the
task usually does not consume that amount; while if it is with
the average value, the task would suffer slowdown whenever
it tries to access more than that average value during one
sampling period. The problem is only compounded when the
available resource amount also changes over time, as it is
the case for memory bandwidth. One ideal solution is to
dynamically adjust the resource provision based on its actual
usage: when the task is highly demanding on the resource, it
can try to reclaim some possible spare resource from other
entities; on the other hand, when it consumes less than the
reserved amount, it can share the extra resource with other
entities in case they need. Furthermore, if the amount of
available resource is higher than expected, we can allocate the
remaining resource units among demanding tasks. There have
been two types of dynamic adaptation schemes: feedback-
control based adaptive reservation approaches [2] and resource
reclaiming based approaches [6], [10]. In our work, we choose
a reclaiming based approach for simplicity.

The details of our bandwidth management system, Mem-
Guard, are provided in the next section. In summary, based
on the discussed experiments, the system will need to: (1)
reserve memory bandwidth resource to one specific core
(ak.a resource reservation) to provide predictable and guar-
anteed worst-case behavior; and (2) provide some dynamic
resource adjustment on the resource provision (a.k.a resource
reclaiming) to efficiently exploit varying system resources and
improve task responsiveness.

III. MEMGUARD

The goal of MemGuard is to provide memory performance
isolation while still maximizing memory bandwidth utilization.
By memory performance isolation, we mean that the average
memory access latency of a task is no larger than when
running on a dedicated memory system which processes
memory requests at a certain service rate (e.g., 1GB/s). A
multi-core system can then be considered as a set of uni-
core systems, each of which has a dedicated, albeit slower,
memory subsystem. This notion of isolation is commonly
achieved through resource reservation approaches in many
real-time literature [1] mostly in the context of CPU bandwidth
reservation.

In order to achieve performance isolation, MemGuard regu-
lates each core’s memory request rate. Specifically, we regulate

MemGuard Operating System

Reclaim manager

' ¥ v v
B/W B/W B/W B/W
lator lator Regulator Regulator
L L L3 L
| | y !
| pmc | | pmc | [pmc | PMC
CORE CORE CORE CORE

Multicore Processor

DRAM Controller ‘

*'4

DRAM ‘

Fig. 3: MemGuard system architecture.

the total sum of request rates among all cores to be less than
the minimum service rate of the DRAM subsystem, denoted
as Tpmin. Our observation is that by regulating the aggregated
requests rate to the DRAM controller, we can minimize the
potential delay in the DRAM controller as requests are likely
to be processed immediately. This is similar to the requirement
of CPU bandwidth reservation in that the total sum of CPU
bandwidth reservation must be equal or less than 100% of CPU
bandwidth. In our case, the memory bandwidth available for
reservation is restricted to the minimum DRAM service rate
as it would make memory access delay caused by concurrent
accesses from other cores negligible.

A. System Architecture

Figure 3 shows the overall system architecture of Mem-
Guard and its two main components: the per-core regulator
and the reclaim manager. The per-core regulator is responsible
for monitoring and enforcing its corresponding core memory
bandwidth usage. It reads the hardware PMC to account the
memory access usage. When the memory usage reaches a pre-
defined threshold, it generates an overflow interrupt so that
the specified memory bandwidth usage is maintained. Each
regulator has a history based memory usage predictor. Based
on the predicted usage, the regulator can donate its budget
so that cores can start reclaiming once they used up their
given budget. The reclaim manager maintains a global shared
reservation for receiving and re-distributing the budget for all
regulators in the system.

In this paper, we focus on systems that the last level cache is
private or partitioned on a per-core basis, in order to focus on
DRAM bandwidth instead of cache space contention effects.
We assume system operators or an external user-level daemon
will configure MemGuard either statically or dynamically via
the provided kernel filesystem interface.

Figure 4 shows the high level implementation of Mem-
Guard. Using the figure as a guide, we now describe the
memory bandwidth management mechanisms of MemGuard
in the following subsections.

B. Memory Bandwidth Reservation

MemGuard provides two levels of memory bandwidth reser-
vation: system-wide reservation and per-core reservation.

function periodic_timer_handler ;
begin
QP output of usage predictor ;
@Q; < user assigned static budget ;
it QP > (; then

| g+ Qi
else

L G — Qpredict .

i 4 s

9 G += max{0,Q; — ¢;};
10 program PMC to cause overflow interrupt at g;;
11 re-schedule all dequeued tasks;

NN R W N -

12 function overflow_interrupt_handler ;

13 begin

14 u; < used budget in the current period ;
15 if G > 0 then

16 if u; < @Q; then

17 | ¢+ min{Q; —u;, G} ;

18 else

19 | @i« min{Quin, G} ;

20 G -= q;

21 program PMC to cause overflow interrupt at g; ;
22 Return ;

23 if u; < @Q; then

24 L Return ;

25 if Y u; =7y, then

26 wake up all cores ;

27 L Return ;

28 | de-schedule tasks in the CPU run-queue ;
Fig. 4: MemGuard Implementation

1) System-wide reservation regulates the total allowed mem-
ory bandwidth such that it does not exceed the mini-
mum DRAM service rate 7,,;,, providing performance
isolation on the reserved bandwidth. We describe an
experimental method to estimate r,,;, in Section V-A.

2) Per-core reservation assigns a fraction of r,,;, to each
core, hence each core reserves bandwidth B; and 7,,;, =
Z?io B;.

Each regulator reserves memory bandwidth represented by
memory access budget Q; for every period P, i.e., B; = 612,
Regulation period P is a system-wide parameter and should
be small to effectively enforce specified memory bandwidth.
In our current implementation, P is equal to a scheduler tick
length as MemGuard is called at each scheduler tick handler.
Although small regulation period is better for predictability,
there is a practical limit on reducing the period due to interrupt
and scheduling overhead; we currently configure the scheduler
tick as Ims. The reservation follows the common resource
reservation rules [17], [19], [20]. Per-core instant budget g;
is deducted as the core consumes memory bandwidth. For
accurately accounting memory usage, we use per-core PMC
interrupt; Specifically, we program the PMC at the beginning
of each regulation period so that it generates an interrupt when

q; is depleted for Core i. Once the interrupt is received, the
regulator calls the OS scheduler to dequeue all tasks from the
run-queue of the core so that the core can not access memory
any more until the next period. At the beginning of the next
period the budget is replenished in full and all dequeued tasks,
if any, are enqueued to the run-queue.

C. Memory Bandwidth Reclaiming

Each core has statically assigned bandwidth @); as the base-
line. It also maintains an instant budget ¢; to actually program
the PMC; the ¢; can vary at each period depending on predictor
and the actual bandwidth usage of the core. The predictor uses
an Exponentially Weighted Moving Average (EWMA) filter to
estimate the predicted memory usage QP"°%“* of the current
period; it takes the memory bandwidth usage of the previous
period as input. The reclaim manager maintains a global
shared budget G. It collects surplus bandwidth from each core
and re-distributes it when in need. Note that G is initialized at
the beginning of each period and any unused G is discarded
at the end of this period. Each core only communicates with
the central reclaim manager for donating and reclaiming its
budget. This avoids possible circular reclaiming among all
cores and greatly reduces implementation complexity and
runtime overhead.

The details of the reclaiming rules are as follows:

1) At the beginning of each regulation period, the current
per-core budget g; is updated as follows:

q;i = miH{erediCta Qi}

If the core is predicted not to use the full amount of the
assigned budget ();, the current budget is set the predicted
usage, Q7 redict (See Line 5-8 in Figure 4).

2) At the beginning of each regulation period, the global
budget G is updated as follows:

G = Z{Qi — ¢}

Each core donates its spare budget to G (See Line 9 in
Figure 4).

3) During execution, the core can reclaim from the global
budget if its corresponding budget is depleted. The
amount of reclaim depends on the requesting core’s con-
dition: If the core’s used budget u; is less than the static
reserved bandwidth @; (this happens when the prediction
is smaller than @);), then it tries to reclaim amount equal
to the difference between (Q; and the current usage u,; if
the core used equal or greater than the assigned budget
Q;, it only gets up to a small fixed amount of budget,
Qmin (See Line 16-19 in Figure 4). If @i, is too
small, too many interrupts can be generated within a
period, increasing overhead. As such, it is a configuration
parameter and empirically determined for each particular
system.

4) Since our reclaim algorithm is based on prediction, it is
possible a core may not be able to use the originally
assigned budget ;. This can happen when the core
donates its budget too much (due to mis-prediction) and

‘§““1‘0“HlSHHéOHHiS
=13 CPU execution

—r
time d
~— stall I memory access

Fig. 5: An illustrative example with two cores

other cores already reclaimed all the donated budget (i.e.,
G = 0) before the core tries to reclaim. When this
happens, our current heuristic is to allow the core con-
tinue execution, hoping that it may use its @Q;, although
it is not guaranteed (See Line 23-24 in Figure 4). At
the beginning of the next period, we verify if it was
able to use the budget. If not, we call it a reclaim
underrun error and notify the predictor of the difference
(Q; — u;). The predictor then tries to compensate it by
using Q; + (Q; — u;) as its input for the next period.

D. Spare Memory Bandwidth Sharing

Since system-wide reservation only accounts up to the
minimal service rate 7,,;, (i.e., guaranteed bandwidth), we
try to exploit the spare memory bandwidth exceeding 7,
(i.e., best-effort bandwidth) whenever it is possible, in order
to improve the overall system throughput.

When all cores collectively use their assigned budgets, the
remaining time (until the next period begins) is considered
as spare time and MemGuard tries to maximize memory
throughput by allowing cores to continue—we call it spare
memory bandwidth sharing (See Line 25-27 in Figure 4)

Note that this only starts after all the cores have depleted
their assigned budgets. The reason is that if a core has
not yet used ¢;, allowing other cores to execute may bring
intensive memory contention, preventing the core from using
the remaining g;.

E. Example

Figure 5 shows an example with two cores, each with an
assigned static budget 3 (i.e., Qo = 1 = 3). The regulation
period is 10 time units and the arrows at the top of the figure
represent the period activation times. The figure demonstrates
the global budget together with these two cores.

When the system starts, each core starts with the assigned
budget 3. At time 10, the prediction for each core is 1 as it
only used budget 1 within the period [0,10], hence, the instant
budget becomes 1 and the global budget G' becomes 4 (each
core donates 2). At time 12, Core 1 depletes its instant budget.

Since its assigned budget is 3, Core 1 tries to reclaim 2 from
G and G becomes 2. At time 15, Core 1 depletes its budget
again. This time Core 1 already used its assigned budget, only
a fixed amount of extra budget (Q,;n) 1 is reclaimed from G
and G becomes 1. At time 16, Core 0 depletes its budget. Since
G is 1 at this point, Core 0 only reclaims 1 and G drops to O.
At time 17, Core 1 depletes its budget again then it dequeues
all the tasks as it can not reclaim additional budget from G.
When the third period starts at time 20, the Q%"“*“" is larger
than @);. Therefore, Core 1 gets the full amount of assigned
budget 3, according to Rule 1 in Section III-C, while Core
0 only gets 1, and donates 2 to G. At time 25, after Core
1 depletes its budget, Core 1 reclaims an additional budget
Qmin from G.

IV. EVALUATION SETUP

In this section, we introduce the platform used for the
evaluation and the software system implementation.

A. Evaluation platform

Figure 6 shows the architecture of our testbed, an Intel
Core2Quad Q8400 processor. The processor is clocked at
2.66GHz and has four physical cores. It contains two separate
2MB L2 caches; each L2 cache is shared between two cores.

As our focus is not the shared cache, we use cores that do
not share the same LLC for experiments (i.e., Core 0 and Core
2 in Figure 6). We do, however, use four cores when tasks are
not sensitive to shared LLC by nature (e.g., working set size
of each task is bigger than the LLC size).

In order to account per-core memory bandwidth usage, we
use a LLC miss performance counter per each core. Since
the LLC miss counter does not account prefetched memory
traffic, we disabled all hardware prefetchers '. Note that LLC
miss counts do not capture LLC write-back traffic which may
underestimate actual memory traffic, particularly for write-
heavy benchmarks. However, because SPEC2006 benchmarks,
which we used in evaluation, are read heavy (only 20% of
memory references are write [13]); and memory controllers
often implement write-buffers that can be flushed later in time
(e.g., when DRAM is not in use by other outstanding read
requests) and writes are considered to be completed when
they are written to the buffers [12], write-back traffic do
not necessarily cause additional latency in accessing DRAM.
Analyzing the impact of accounting write-back traffic in terms
of performance isolation and throughput is left as future work.

B. Software Implementation

We implemented MemGuard in Linux version 3.6. Most
code is developed as a kernel module with small modifications
in the core kernel scheduler 2. We use the kernel scheduler
tick handler for the period handler. We use the perf_event
infrastructure to install the counter overflow handler at each
period. The logic of both handlers is shown in Figure 4.

When an overflow interrupt occurs (budget depletion), the
overflow handler may dequeue all runnable tasks in that core

'We used http://www.eece.maine.edu/~vweaver/projects/prefetch-disable/
2MemGuard is available at https://github.com/heechul/memguard.

Intel Core2Quad Processor

CORE 0
[1] [o]
v
‘ L2 Cache ‘ ‘

| }

\ SYSTEM BUS |
y

‘ MEMORY ‘

L2 Cache ‘

Fig. 6: Hardware architecture of our evaluation platform.

(in case reclaiming fails). The PMC programming overhead is
negligible as it only requires a write to a core local register.
The overhead of dequeuing/enqueueing tasks is small (around
two microseconds) when the number of runnable tasks is
small. The overhead, however, grows linearly as the number of
runnable tasks increase. For example, with 10 runnable tasks,
we observe around 10us overhead (i.e., 1% of the 1ms period).
Although we argue that this is not a big problem in embedded
systems where the number of running tasks is typically small,
we plan to investigate ways to further minimize the overhead.

MemGuard supports several memory bandwidth reservation
modes, namely per-core bandwidth assignment and per-task
assignment mode. In per-core mode, system designers can
assign absolute bandwidth (e.g., 200MB/s) or relative weight
expressing relative importance. In the latter case, the actual
bandwidth is calculated at every period by checking active
cores (cores that have runnable tasks in their runqueues). In
per-task mode, the task priority is used as weight for the core
the task runs on. Notice that in this mode, a task can migrate to
a different core with its own memory bandwidth reservation.
In Section V, we use per-core assignment with both absolute
bandwidth mode and weight mode depending on experiments.

V. EVALUATION RESULTS AND ANALYSIS

In this section, we evaluate MemGuard in terms of per-
formance isolation guarantee and throughput with a set of
synthetic and SPEC2006 benchmarks.

A. Guaranteed Memory Bandwidth

We first experimentally measure the guaranteed bandwidth,
which is introduced in Section III, and the peak bandwidth
with two synthetic benchmarks: latency and bandwidth.

The latency benchmark is designed to access memory in
a very inefficiently way. It iterates one linked list that is
permuted randomly over a chunk of memory whose size is
much bigger than the LLC size. Pointer chasing is ineffi-
cient because data must be fetched to move on to the next
location, effectively enforcing serial accesses to the DRAM.
Furthermore, as the linked list is randomly permuted, the next
location is likely to hit different row in the DRAM, further
reducing the access rate. Finally, caches do not help much
here because the working set size is much larger than the LLC
size. Therefore, we consider that this benchmark effectively
represents the worst case memory access pattern.

aggregated bandwidth (MB/s)
benchmark | T core | 2 cores 4cores
latency 683 1185 1198
bandwidth 6190 8478 8490

TABLE I: Aggregated memory bandwidth.

On the other hand, the bandwidth benchmark accesses mem-
ory in sequence with no data dependency between consecutive
accesses. This allows the CPU generate multiple memory
requests in parallel, maximizing memory level parallelism
(MLP) available in the memory system; a typical DRAM
module consists of 4-8 DRAM chips each of which also
contains 4-8 banks that can be accessed in parallel.

In order to stress the DRAM controller as much as possible,
we assign one benchmark instance to each core and increase
the number of cores from 1 to 4. Table I shows the aggregated
memory bandwidth of all cores. First, note that the memory
access pattern significantly affects achieved bandwidth. The
latency benchmark running on a single core achieved only
0.6GB/s, while the bandwidth benchmark achieved 6GB/s. As
we increase the number of cores, the aggregated bandwidths
are increased in both benchmarks due to increased MLP. If all
requests from all cores are directed to the same DRAM chip
and the same DRAM bank, achieved bandwidth can be close
to 0.6GB/s as MLP would be totally eliminated. On a typical
multi-programmed workload, however, such possibility would
be very low. We found 1.2GB/s is a practical minimum service
rate for our platform and used it as the r,,;, for configuring
MemGuard in the rest of the evaluation unless otherwise noted.

B. Isolation Effect of Reservation

In this experiment, we illustrate the effect of memory
bandwidth reservation on performance isolation guarantee.
We pair the most memory intensive benchmark, 470.lbm as
the background task, with a foreground task selected from
SPEC2006 benchmarks. Each foreground task runs on Core
0 with 1.0GB/s memory bandwidth reservation while the
background task runs on Core 2 with reservation varying from
0.2GB/s to 2.0GB/s. Note that assigning more than 0.2GB/s
on Core 2 makes the total bandwidth exceeds the estimated
minimum DRAM service rate of 1.2GB/s. We disable both
reclaim and spare bandwidth sharing mode so that each task
can not use more than its assigned budget, we call this
reservation only mode.

Figure 7 shows the IPC of each foreground task, normalized
to the IPC measured in isolation (i.e., no background task)
with the same 1.0GB/s reservation. First, notice that when we
assign 0.2GB/s to Core 2 (denoted “w/ 1bm:0.2G”), the IPC of
each task is very close to the ideal value 1.0—i.e., no negative
performance impact from the co-running background task.
However, as we increase the memory bandwidth of Core 2,
the IPC of the foreground task gradually decrease below 1.0—
i.e., performance isolation is violated due to increased memory
contention. For example, 462.libquantum on Core0 shows 30%
IPC reduction when the background task is running on Core2
with 2.0GB/s reservation (denoted "w/ 1bm:2.0G”).

1.3

w/ 1bm:0.2G ——1
12+ w/ 1bm:0.8G 2 o
’ w/lbm:1.4G @ 1

W/ 1bm2.0G em—
L1t 1

Normalized IPC
[=J
K=
T

08 F i

07t ; 1
0.6 |]
0.5
%6 8 L2 43 3, 3, 0 0,
2, Y& 9 3 24) 3 /7
lbg, O, ey ey, S bz,
Uy, 3 g
11,)2 O/l{

Fig. 7: Normalized IPC of a subset of SPEC2006 (Core 0),
co-scheduled with 470.1bm (Core 2)

This results demonstrate that performance isolation can
be achieved by regulating the aggregated total request rate.
Specifically, limiting the rate to be smaller than r,,;, achieves
performance isolation for the SPEC benchmarks shown in this
figure. The rest of SPEC benchmarks also show consistent
behavior but we omit them for space limitation.

C. Results with SPEC2006 Benchmarks on Two Cores

We now evaluate MemGuard using the entire SPEC 2006
benchmarks. We first profile the benchmarks to better under-
stand of their characteristics. We run each benchmark for 10
seconds with the reference input and measure the instruction
counts and LLC miss counts, using perf tool included in the
Linux kernel source tree, to calculate the average IPC and the
memory bandwidth usage. We multiply the LLC miss count
with the cache-line size (64 bytes in our testbed) to get the
total memory bandwidth usage.

Table II shows the results in decreasing order of average
memory bandwidth usage, when each benchmark runs alone
in our evaluation platform. Notice that the benchmarks cover a
wide range of memory bandwidth usage, ranging from 1MB/s
(453.povray) up to 2.1GB/s (470.1bm).

1) Effects of Reclaiming and Spare Bandwidth Sharing: In
this experiment, we evaluate the effect of reclaim and spare
bandwidth sharing modes to the performance (measured in
IPC) of co-scheduled foreground and background tasks (Core
0 and 2 respectively). We configure 7,,,, as 1.2GB/s and
assign a memory bandwidth weight of five on Core 0 and
one on Core 2 (i.e., 1000MB/s for Core 0 and 200MB/s for
Core 2).

Figure 8 shows the normalized IPCs of each pair of fore-
ground (X-axis) and background (470.lbm) tasks, w.r.t. IPCs
measured in isolation with the same memory reservations, for
(a) reclaim, (b) spare bandwidth sharing, and (c) reclaim+spare
bandwidth sharing. The X-axis shows foreground tasks, sorted
in decreasing order of memory intensity. Note that Core 2,
which runs the background task, is severely under-reserved;

Avg. Avg. Memory
Benchmark IPCg? B/W(NgIB/s) Intensity
470.1bm 0.52 2121
437 leslie3d 0.51 1581
462.libquantum 0.60 1543
410.bwaves 0.62 1485
471.omnetpp 0.83 1373 High
459.GemsFDTD | 0.50 1203
482.sphinx3 0.58 1181
429.mcf 0.18 1076
450.soplex 0.54 1025
433.milc 0.59 989
434.zeusmp 0.93 808
483.xalancbmk 0.54 681
436.cactusADM | 0.68 562
403.gcc 0.98 419
456.hmmer 1.53 317 Medium
473.astar 0.58 307
401.bzip2 0.97 221
400.perlbench 1.36 120
447.dealll 1.41 118
454.calculix 1.53 113
464.h264ref 1.42 101
445.gobmk 0.97 95
458.sjeng 1.10 74
435.gromacs 0.86 60
481.wrf 1.73 38 Low
444.namd 1.47 18
465.tonto 1.38 2
416.gamess 1.34 1
453.povray 1.17 1

TABLE II: SPEC2006 characteristics

only 200MB/s is reserved while the task’s average bandwidth
is above 2GB/s in Table II.

In this configuration, we are particular interested to see (1)
how the background task would improve performance and (2)
how the foreground task would be affected (ideally should not
be affected by the co-running background task).

Figure 8(a) shows the effect of bandwidth reclaiming. For
most pairs, the background task achieves a higher IPC w.r.t.
running alone under the same reservation without reclaiming.
This can be explained as follows: if the foreground task does
not use the assigned budget, the background task can effec-
tively reclaim the unused budget and make more progress. In
particular, the background tasks in right side of the figure show
significant performance improvements (from 433.milc on the
X-axis). This is because the corresponding foreground tasks
use considerably smaller average bandwidth than the assigned
budget. Consequently, the background tasks can reclaim more
budget and achieve higher performance. The average IPC of
each background task is improved by 3.8x, compared to the
case when it runs alone under 0.2 GB/s bandwidth reservation.
Note that the slowdown of foreground task, due to reclaiming
of background task, is small—less than 3% on average.
The slight performance reduction, i.e., reduced performance
isolation, can be considered as a limitation of our prediction
based approach which can result in reclaim underrun error as
described in Section III-C. To better understand this, Figure 9
shows the reclaim underrun error rate (error periods / total
periods) for Figure 8(a). On average, the error rate is 4% and
the worst case error rate is 16% for 483.xalancbmk. Although
483.xalancbmk suffers higher reclaim underrun error rate, it

average
453.povray
416.gamess
465.tonto

444 namd
481.wrf
435.gromacs
458.sjeng
445.gobmk
464.h264ref
454.calculix
447 dealll
400.perlbench
401.bzip2
473.astar
456.hmmer
403.gcc
436.cactusADM

483.xalancbmk
434.zeusmp
433.milc
450.soplex
429.mcf
482.sphinx3
459.GemsFDTD
471.omnetpp
410.bwaves
462.libquantum
437 leslie3d

20

470.1bm
I I
o = o °
(95)9)e1 JOIId WIB[odY
geomean
453.povray
T 4]6.gamess
465.tonto
444.namd
481.wrf
435.gromacs
—— 458.sjeng
445.gobmk
== 464.h264ref
== 454.calculix
B== 447 dealll
= 400.perlbench
== 401.bzip2
== 473.astar
= 456.hmmer
= 403.gcc
== 436.cactusADM
—~— 483 .xalancbmk
m..m = 434.zeusmp
nmm 433.milc
MM 450.soplex
=<1 oqmasee® 429.mcf
2§ passed 132 sphinx3
& g 459.GemsFDTD
cm& == 471.omnetpp
= 410.bwaves
"ge===s 462.libquantum
E=== 437.leslie3d
pes==2 470.1bm
I I I I I I I
AN 0o >~ © wn < M a - o

OdI pazifeutioN

Fig. 9: Reclaim underrun error rate

(a) Reclaim

reservation only 20

reclaim+spare share 00500008

average

Ibm.povray

1bm.game:

w/o MemGuard ne—

Ibm.wrf

Ibm.gcc

Ibm.milc

Ibm.mcf

Ibm.lbm

2.5

wns DI

foreground(X-axis)
background(470.1bm) bessssss

geomean
453.povray
416.gamess
465.tonto
444.namd
481.wrf
435.gromacs
458.sjeng
445.gobmk
464.h264ref
454.calculix
447 dealll
400.perlbench
401.bzip2
473.astar
456.hmmer
403.gcc
436.cactusADM
483.xalancbmk
434.zeusmp
433.milc
450.soplex
429.mcf
482.sphinx3
459.GemsFDTD
471.omnetpp
410.bwaves
462.libquantum
437 leslie3d
470.1bm

»fl‘flMMNMHNNNWNWNMN

L
N o0

o~ 0 n < n A

1
0

OdI pazifeutioN

Ibm.tonto
Ibm.namd

Ibm.gromacs
Ibm.sjeng
Ibm.gobmk
Ibm.hlbmref
Ibm.calculix
Ibm.dealll
Ibm.perlbench
Ibm.bzip2
Ibm.astar
Ibm.hmmer

Ibm.soplex

Ibm.sphinx3
1bm.GemsFDTD
Ibm.omnetpp
Ibm.bwaves
Ibm.libquantum
Ibm.leslie3d

Ibm.cactusADM
Ibm.xalancbmk
Ibm.zeusmp

(b) Spare Share

Fig. 10: Throughput comparison

the achieved bandwidth is relatively small in most of the

reclaim underrun error periods.

Figure 8(b) shows the effect of spare bandwidth sharing.

Notice that the background tasks on the left side of the figure
width of each core is consumed more quickly. After using the

total reserved bandwidth, 7,,;,, the spare bandwidth sharing

mode allows both tasks make more progress by allowing them
to continue to execute. Note that the spare bandwidth sharing

show more significant improvements. This is because when
both tasks are highly memory intensive, the reserved band-
mode is also beneficial to the foreground tasks, especially the
memory intensive ones, as they can receive more budget while
they still exclusively use their reserved budgets. On average,
the performance is improved by 40% for background tasks
and by 9% for foreground tasks.

T T T T T
=== geomean
453.povray
416.gamess
465.tonto
444 namd
= 481.wrf
435.gromacs
458.sjeng
= 445.gobmk
== 464.h264ref
454.calculix
—— 447 .dealll
400.perlbench
passes 401 bzip2
473.astar
—— 456.hmmer
= 403.gcc
436.cactusADM
o~ 483.xalancbmk
mm T——— 434.zeusmp
= sesssessesament 433.milc
MM I,H 450.soplex
23 mesmesend 429 mcf
g5 reseesqmmsd 482.sphinx3
povamv T 459.GemsFDTD
cm.»nw —— 471.omnetpp
= |ﬂ“ 410.bwaves
\oseessseegmm== 462.libquantum
feeseessememen 437 leslie3d
e PV
| | | | | | i

L
N 0

o~ 0 N T N A - O

OdI pazifeutioN

(c) Reclaim+Spare Share

Figure 8(c) shows the effect of using both reclaim and
spare bandwidth sharing. It can be considered roughly as

Fig. 8: Effect of Reclaim, Spare Sharing, and Reclaim+Spare

Share

the combination of the two previous results: the background
task gets speedup either from reclaiming or spare bandwidth
sharing. The performance of background tasks is improved

does not suffer noticeable performance degradation, because

the absolute difference between the reserved bandwidth and

462 libquantum(Core0)
433 mile(Corel)
410.bwaves(Core2)
470.Ibm(Core3)

462 libquantum(Core0)
433 mile(Corel)
8 410bwaves(Core2)
470.1bm(Core3)

[— | —
]]
] |
— L]

Normalized 1PC
Normalized TPC

(a) Tmin=1.2GB/s (b) 71in=2.4GB/s

Fig. 11: Isolation and Throughput Impact of 7,

by 368% (i.e., 4.68x speedup) on average. This shows the
effectiveness of our approach.

Finally, Figure 10 compares throughput with and without
using MemGuard (both reclaim and spare bandwidth sharing
modes are enabled). The Y-axis shows the IPC sum of each
pair of foreground and background tasks that represents the
system throughput of the pair. Although the system without
MemGuard achieves higher throughput in general, it does not
provide performance isolation. MemGuard provides perfor-
mance isolation at a reasonable throughput cost.

D. Results with SPEC2006 on Four Cores

In this experiment, we evaluate MemGuard on four cores
using four SPEC benchmarks—462.libquantum, 433.milc,
410.bwaves, and 470.lbm—each of which runs on one core
in the system.

Because the testbed has two shared LLC caches, each
of which is shared by two cores, we carefully choose the
benchmarks in order to minimize cache storage interference
effect. To this end, we experimentally verify each benchmark
by running it together with one synthetic cache trash task in
both shared and separate LLC configurations; if performance
of the two configurations differ less than 5%, we categorize
the benchmark as LLC insensitive.

Figure 11(a) shows the normalized IPC of each task when
all four tasks are co-scheduled (1) without using MemGuard,
(2) MemGuard with reservation only, and (3) MemGuard with
both reclaiming and spare bandwidth sharing. The Y-axis is
normalized to the IPC measured in isolation under MemGuard
with reservation only mode. The r,,;, is 1.2GB/s and the
weight assignment of each core is 9:1:1:1 for Core 0-3 (i.e.,
900MB/s for Core0, 100MB/s for Corel-3).

The first group of bars, without MemGuard, shows that
462.libquantum on Core 0 is 33% slower than the baseline
reservation only case while the other three tasks have much
higher IPCs. Although it is clear that overall throughput is
better without using MemGuard, it can not provide isolated
performance guarantee for one specific task, in this case
462.libquantum. The second group, MemGuard with reserva-
tion, shows that each task achieves its performance goal set by
its reserved memory bandwidth, as the IPC of each benchmark

30 =

300

Core) — Core) ——
300 Corel = 300 Core] -~
Core2 - Core2
)
. w0 Core3 o p w0 Core3 e
§ 260 gu0y \

g 40 M
e I mo—
200 ml” o e
160 L L L L L L L L L 160 L L L L L L L L L
24 6 8 1012 1416 182 24 6 8 1012 1416 18 20
Time(sec) Time(sec)

(a) w/o MemGuard (b) with MemGuard

Fig. 12: Frame-rate comparison

is nearly identical to the one of running alone. The final
group, MemGuard with reclaim and spare bandwidth sharing,
shows that performance of all three tasks at Core 1,2 and 3
are considerably improved without hurting the performance of
462.libquantum.

Figure 11(b) follows the same weight settings but doubles
the 7,,:, value to 2.4GB/s in order to compare its effect on
throughput and performance isolation. The tendency is that
the performance of each task on Core 1, 2, and 3 improves
at the cost of reduced performance of 462.libquantum at Core
0. Under MemGuard with reservation only, 462.libquantum is
slowed by 17% compared to running alone under the same
reservation. In other words, reservation does not provide per-
formance isolation anymore due to memory contention. This is
consistent with our finding in Section V-B. Under MemGuard
with reclaim and spare bandwidth sharing mode, the IPC of
462.libquantum is further reduced, because other cores can
generate more interference using reclaimed bandwidth that
462.libquantum donated. This shows the trade off between
throughput and performance isolation when using MemGuard.

E. Effect on Soft Real-time Applications

In this experiment, we illustrate the effect of MemGuard for
soft real-time applications. We run four instances a synthetic
soft real-time image processing benchmark fps, one for each
core, and compare the average frame-rate of each instance
with and without using MemGuard. The benchmark processes
an array of two HD images (each is 32bpp HD image data:
1920x1080x4 bytes = 7.9MB) in sequence. It is greedy in the
sense that it attempts to process as quickly as possible. With
MemGuard, we assign different weights of 1, 2, 4, and 8 for
each core respectively, set r,,;, = 1.2GB/s, and enable spare
bandwidth sharing mode to utilize spare bandwidth effectively.

Figure 12(a) shows the frame-rate of each fps instance
on each core without using MemGuard. As they all access
memory in a same way, they get the same fraction of mem-
ory bandwidth; hence resulting almost identical frame-rates.
Figure 12(b) shows the frame-rates with MemGuard. As we
assign different weights for each core, each instance shows
different frame-rates, demonstrating the effect of MemGuard.

VI. RELATED WORK

Resource reservation has been well studied especially in
the context of CPU scheduling [17], [1] and has been applied
to other resources such as GPU [14], [15]. The basic idea
is that each task or a group of tasks reserves a fraction
of the processor’s available bandwidth in order to provide
temporal isolation. Abeni and Buttazzo proposed Constant
Bandwidth Server (CBS) [1] that implements reservation by
scheduling deadlines under EDF scheduler. Based on CBS,
many researchers proposed reclaiming policies in order to
improve average case performance of reservation schedulers
[10], [7], [6]. These reclaiming approaches are based on the
knowledge of task information (such as period) and the exact
amount of extra budget. While our work is inspired by these
works, we apply reclaiming on memory bandwidth which is
very different from CPU bandwidth in many ways.

DRAM bandwidth is different from CPU bandwidth in
the sense that achieved bandwidth depends on the DRAM
state and access history which makes it difficult to guarantee
performance. To solve this problem, several DRAM controllers
were proposed. Akesson et al. proposed Predator DRAM
controller that uses combination of regulators and credit based
scheduler to provide performance guarantee among multiple
hardware components that access the DRAM [4], [3]. Reineke
et al. proposed PRET DRAM controller that partitions the
physical address space based on the internal structure of the
DRAM chip in order to eliminate contention caused by sharing
such internal resource [18]. Also in more general purpose
computing systems, DRAM controller is studied in order to
improve fairness and throughput. Nesbit et al. applied the
network fair queuing theory in designing DRAM controller
[16]; Ebrahimi et al. proposed a cache controller level throt-
tling mechanism [9], which is similar to our method in the
sense that it effectively changes request rates. While these
DRAM controllers provide solutions to improve predictability
and isolation in hardware level, we focus on a software level
solution that can be applied to commodity hardware platforms.

OS level memory access control was first discussed in
literature by Bellosa [5]. Similar to our work, his work also
provide memory bandwidth reservation through an OS level
mechanism (by inserting idle loops in the TLB miss handler).
Unlike to our work, however, his work provide neither sound
definition of maximum reservable bandwidth nor reclaiming
of unused bandwidth, which may result in poor memory
bandwidth utilization.

VII. CONCLUSION

We have presented MemGuard, a memory bandwidth reser-
vation system, for supporting efficient memory performance
isolation on multi-core platforms. It decomposes memory
bandwidth as two parts, guaranteed bandwidth and best effort
bandwidth. Memory bandwidth reservation is provided for
the guaranteed part for achieving performance isolation. An
efficient reclaiming mechanism is proposed for effectively
utilizing the guaranteed bandwidth. It further improves system
throughput by exploiting best effort bandwidth after each core
satisfies its guaranteed bandwidth. It has been implemented

10

in Linux kernel and evaluated on a real multi-core hardware
platform.

Our evaluation with SPEC2006 benchmarks showed that
MemGuard is able to provide memory performance isolation
under heavy memory intensive workloads on multi-core plat-
forms. It also showed that the proposed reclaiming algorithm
improves overall throughput compared to a reservation only
system under time-varying memory workloads.

ACKNOWLEDGEMENTS

This research is supported in part by ONR N00014-12-1-
0046, Lockheed Martin 2009-00524, Rockwell Collins RPS#6
45038, NSERC, and NSF A17321.

REFERENCES
[1]
[2]

L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Real-Time Systems Symposium (RTSS), 1998.

L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Real-Time Systems Symposium
(RTSS), 2002.

B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable
sdram memory controller. In HW/SW codesign and system synthesis
(CODES+1ISSS), 2007.

B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time
scheduling using credit-controlled static-priority arbitration. In Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), 2008.
F. Bellosa. Process cruise control: Throttling memory access in a soft
real-time environment. Technical Report TR-14-97-02, University of
Erlangen, Germany, July 1997.

M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun
control. In Real-Time Systems Symposium (RTSS), 2000.

M. Caccamo, G. Buttazzo, and D. Thomas. Efficient reclaiming in
reservation-based real-time systems. In Real-Time Systems Symposium
(RTSS), 2005.

T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari. A robust mechanism
for adaptive scheduling of multimedia applications. ACM Trans. Embed.
Comput. Syst., 10(4), November 2011.

E. Ebrahimi, C.J. Lee, O. Mutlu, and Y.N. Patt. Fairness via source
throttling: a configurable and high-performance fairness substrate for
multi-core memory systems. ACM Sigplan Notices, 45(3), 2010.
G.Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth
in constant bandwidth servers. In Euromicro Conference on Real-Time
Systems (ECRTS), 2000.

J.L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4), 2006.

Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual.
http://download.intel.com/products/processor/manual/325383.pdf.

A. Jaleel. Memory characterization of workloads using instrumentation-
driven simulation. http://www. glue. umd. edu/ajaleel/workload, 2010.
S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
sharing in gpu-accelerated windowing systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Timegraph:
Gpu scheduling for real-time multi-tasking environments. In USENIX
Annual Technical Conference, 2011.

K.J. Nesbit, N. Aggarwal, J. Laudon, and J.E. Smith. Fair queuing
memory systems. In International Symposium on Microarchitecture
(MICRO), 2006.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels:
A resource-centric approach to real-time and multimedia systems. In
Multimedia Computing and Networking (MNCN), 1998.

J. Reineke, 1. Liu, H.D. Patel, S. Kim, and E.A. Lee. Pret dram
controller: Bank privatization for predictability and temporal isolation.
In HW/SW codesign and system synthesis (CODES+ISSS). ACM, 2011.
I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Real-Time Systems Symposium (RTSS), 2003.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1), 1989.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access
control in multiprocessor for real-time systems with mixed criticality. In
Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]
[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

