System-wide Energy Optimization for Multiple DVS Components and Real-time Tasks

Heechul Yun, Po-Liang Wu, Anshu Arya, Tarek Abdelzaher, Cheolgi Kim, and Lui Sha

illinois.edu

DVS in Real-time Systems

- The Goal
 - To minimize energy consumption by adjusting freq. and voltage but still meet the deadline
- Most consider CPU only
 - Assume execution time depends on CPU freq.
- But memory and bus are also important
 - Affect execution time (e.g., memory intensive app will be slowed if memory or bus is slow.)
 - Consume considerable energy (similar order of energy compared to CPU)
 - Are DVS capable in many recent embedded processors

Motivation

Memxfer5b : memory benchmark program

Motivation

Dhrystone: CPU benchmark program

Contents

- Motivation
- Energy Model
 - Considers CPU, BUS and Memory and task characteristics
 - Evaluation (Model validation)
- Energy Optimization of Real-time Tasks
 - Static multi-DVS problem and solution
 - Evaluation
- Conclusion

Task Model

• Task = Computation + Memory fetch

Task Model (3)

• Execution time of a task

$$e = \frac{C}{f_c} + \frac{M}{f_m}$$

- C: CPU cycles of a given task
- *M* : memory cycles of a given task
- $-f_c$: CPU clock frequency
- $-f_m$: Memory clock frequency

Power Model

• Power of a component (i.e., CPU)

$$W = kfV^2 + R$$

-k: capacitance constant

Different k for different modes: k_{active} - active mode capacitance $k_{standby}$ - standby mode capacitance

Energy Model

• Total system energy is

$$E = E_{comp} + E_{mem} + E_{idle}$$

Pure Computation Block

Memory Fetch Block

Idle Block

- I : idle mode power consumption.
- -e: execution time (*C*/*f_c* + *M*/*f_m*)

Energy Model Summary

- System wide energy model
 - Considers CPU, bus, and memory power consumption
 - Considers active, standby and idle modes
 - Other components are assumed to be static (included in R)

Energy Equation

$$E = E_{comp} + E_{mem} + E_{idle}$$

$$= (k_{ca}V_{cpu}^2f_c + k_{bs}V_{bus}^2f_b + k_{ms}V_{mem}^2f_m + R) \times \frac{C}{f_c} - CPU \text{ block}$$

$$+ (k_{cs}V_{cpu}^2f_c + k_{ba}V_{bus}^2f_b + k_{ma}V_{mem}^2f_m + R) \times \frac{M}{f_m} - CPU \text{ block}$$

$$+ (I+R) \times (P-e) - CPU \text{ block}$$

• System-wide energy consumption of a task during period P

Evaluation Platform

Evaluation Platform (2)

- ARM9 based SoC
 - CPU : up to 200Mhz, BUS : up to 100Mhz
 - CPU and BUS are synchronous (BUS = CPU/N)
 - Memory (PSRAM) freq is equal to system bus frequency $(f_b = f_m)$
 - CPU, BUS, and memory all share the common voltage
 - Vdd : 1.504V ~ 1.804V (0.32V step)
- Energy equation

$$E = (k_{ca}V^{2}f_{c} + k_{ms}^{*}V^{2}f_{m} + R) \times \frac{C}{f_{c}} + (k_{cs}V^{2}f_{c} + k_{ma}^{*}V^{2}f_{m} + R) \times \frac{M}{f_{m}} + (I+R) \times (P-e)$$

- V: shared voltage for CPU, bus, and memory
- $-k_{ma}^{*}$: active bus and memory constant
- $-k_{ms}^*$: standby bus and memory constant

Validation

- Methodology
 - 4 synthetic programs with different cache stall ratio (0%, 10%, 25%, 55%)
 - 8 clock configurations (f_c, f_m) for each program
 - Performed nonlinear least square analysis for total
 32 data points against the energy equation

Energy Model Fitting

Energy Equation for Our Platform

$$E = (k_{ca}V^{2}f_{c} + k_{ms}^{*}V^{2}f_{m} + R) \times \frac{C}{f_{c}} + (k_{cs}V_{cpu}^{2}f_{c} + k_{ma}^{*}V^{2}f_{m} + R) \times \frac{M}{f_{m}}$$
$$+ (I+R) \times (P-e)$$

Capacitance (nF)				Power (mW)	
K _{ca}	K _{cs}	K _{ma} *	K _{ms} *	1	R
0.505	0.224	0.540	0.210	6.570	67.434

Obtained coefficients in the energy equation

Contents

- Motivation
- Energy Model
 - Considers CPU, BUS and Memory and task characteristics
 - Evaluation
- Energy Optimization of Real-time Tasks
 - Static Multi-DVS Problem and optimal solution
 - Evaluation
- Conclusion

Static Multi-DVS Problem

 Given a set of periodic real-time tasks (T₁, ..., T_n), where each task invocation requires up to C_i CPU cycles and up to M_i memory cycles at worst.

 Find the energy optimal static frequencies for multiple DVS capable components (CPU, bus, and memory)

Problem Formulation

Minimize $\sum_{i=1}^{n} \frac{H}{P_i} (E_{comp,i} + E_{mem,i}) + E_{idle}$ Subjects to $\sum_{i=1}^{n} \frac{e_i}{P_i} \le 1.$

where

H : hyper period e_i : execution time of task i *E_{comp,i}* : computation block energy of task i $E_{mem,i}$: cache stall block energy of task i *E_{idle}* : idle block energy

Optimal Solution

- Intuitive procedure
 - Find an unconstrained minimal over f_c and f_m ($f_b = f_m$)
 - Check boundary conditions due to system specific constraints. (e.g., minimum and maximum clock range)
 - Details are in the paper

Task set : $C_H = 140^* 10^6$, $M_H = 30^* 10^6$, H = 3s

Evaluation

- Compare the following schemes:
 - MAX
 - CPU and memory are all set to maximum.
 - CPU-only static DVS
 - Memory frequency is set to maximum
 - Baseline static multi-DVS
 - CPU and memory frequencies change proportionally
 - Optimal static multi-DVS
 - Proposed scheme
 - Optimal dynamic multi-DVS
 - Can change frequencies at each task schedule
 - Brute force search among all the possible combination
- Simulation setup
 - Use energy equation obtained from measurements on our real hardware platform

Task set cache stall ratio $(M_H/(C_H+M_H))$: 0.3

Task set utilization ratio(e_H/H): 0.5

Effect of Diversity of Cache Stall Ratio

Conclusion

- Energy model
 - Considers multiple DVS capable components and task characteristic
 - Validated on a real hardware platform
- Static multi-DVS problem
 - Assigns energy optimal *static* frequencies of multiple DVS components for periodic real-time tasks
 - Optimal solution (static multi-DVS scheme) shows better energy saving compared to CPU-only DVS

Thank you.

Additional Slides

CPU-only DVS

Not effective in allowed range

illinois.edu

(*) based on energy equation for out h/w platform. Memory clock was set to max

Power Distribution

Cache stall ratio = 55% (cpu,bus)=(80,80Mhz) Cache stall ratio = 10% (cpu,bus)=(80,80Mhz)

illinois.edu (*) based on energy equation for our h/w platform E = Ecpu + Emem + Estatic

Active and Idle

