Integrating NVIDIA Deep
Learning Accelerator (NVDLA)
with RISC-V SoC on FireSim

Farzad Farshchi®, Qjjing Huang", Heechul Yun?

SUniversity of Kansas, TUniversity of California, Berkeley

-“‘..-lﬂll'-'.-*.
s - o of -‘:ALrp“‘-’!i;-. ."--
) 1.0

i T\

H @ 8
H] -
B 5 2 B
L 5.

. B f‘- -
‘.'-», 1"’ ! o .*r
o, -
'l.." l..,ll"

UNIVERSITY OF CALIFORNIA

SiFive Internship

Rocket Chip SoC
@Si:ive T NVIDIA.

* Rocket Chip: open-source RISC-V SoC
* NVDLA: open-source DNN inference engine
* Demoed the integration at Hot Chips’18

SiFive Internship

Motivation

* Useful platform for research

* Limitations
* No L2
* Fast DRAM, slow SoC

* Expensive: S7k FPGA board

* Let’s integrate NVDLA into FireSim

FireSim

* Fast, cycle-exact full system . -
simulator, runs on FPGA in the cloud o FlreSlm
e Simulated design is derived from te

Rocket Chip RTL

* Decouples target from FPGA DRAM
e Adds its own DRAM and LLC model

e Easy-to-use. Very good

documentation. amazon

web services

How FireSim Works?

 Transforms RTL to target model £ O Token
T | Communication
* Inserts queues at I/O ports of 4 Oﬂ‘ Channel
target AN = Module Port
. FAME1
* Creates a token-based simulator Transform Module
. containing
* In each cycle a token is comb. logic
consumed by model ﬂ |
Register
 What if token queue is empty? |
* The model has to wait 8 {I: Mux

Figure credit: Donggyu Kim et al. “Strober: Fast and Accurate

» Sta | | th e ta rgEt p| pe | | ne Sample-Based Energy Simulation for Arbitrary RTL”

How to Stall The Target Pipeline?

e For Chisel code:

* Rocket Chip is written
in Chisel

Combinational
Circuit '

Clock >

* For Verilog (we added):

—> Combinational
Circuit
Enable :

I: | —— Output
Clock >

Overall System Architecture

* NVDLA is integrated in target

* LLC + Memory Model: Not part of
the target. Added by FireSim.
e Supports multiple models e.g. DDR3,
constant latency

* Runtime configurable LLC: different set,
way, block sizes. No need to rebuild

FPGA image

FPGA

Target Design

Tiles
csg| NVDLA
Rocket Core <«—»| Wrapper
ol M
= DBB
' @ : NVDLA
© 7
L1 D$ 20 |a
o et
=| |E IRQ
L11$ el |5 *
Platform-level
Interrupt Controller

iF

'

System Bus

Coherence Manager

i

LLC + Memory

Model

]

DRAM

Integrate Your Own Accelerator

* Any accelerator can be integrated
(if it fits inside FPGA)

* Develop and test software for your
accelerator in Linux environment
before having the chip in hand

» Get fast and accurate performance
results

FPGA

Target Design

Tiles

Rocket Core

Peripheral Bus
Front Bus

«—»|Accelerator

Your

!

H]

Platform-level
Interrupt Controller

System Bus

| Coherence Manager |

LLC + Memory Model

!

DRAM

NVDLA

* Scalable: nv_small, nv._medium, NVDLA o ouraten Sgace Pus (CSB) - Interrupt
nv_Ia rge Configuration and Control Block
v v v
e We used nv_Iarge: 2048 MACs Con\éo:ltfjfztrional —> Con\(f:czirftion Post-processing
—»
e Convolutional core: matrix- A Y by
Memory Interface
matrix multiplication A

v

Data Backbone (DBB)
* Post-processing: activation

Adopted from “The Nvidia Deep Learning Accelerator”, https://goo.gl/Znyba5

function, pooling, etc.

https://goo.gl/Znyba5

Performance Analysis (I)

* Baseline config:
* Quad-core Rocket Core, 3.2 GHz
* NVDLA: 2048 INT8 MACs, 512 KiB conv. buffer, 3.2 GHz
e LLC: Shared 2 MiB, 8-way, 64 B block

* DRAM: 4 ranks, 8 banks, FR-FCFS

* YOLOV3: 416 x 416 frame, 66 billion operations

Performance Analysis (Il)

* Frame process time: 133 ms (7.5 fps)
* 6/ mson NVDLA

* 66 ms on processor, multithreaded with OpenMP

* Layers not supported by NVDLA are running on processor

* Custom YOLO, upsampling, FP & INT8
* Make common DNN algorithm run very fast

* Computations not supported by the accelerator can make you slow X

Performance Comparison

* Rocket: baseline config, no NVDLA
* NVDLA+Rocket: baseline config o
* Xeon: E5-2658 v3 o]

1072}

* Titan Xp: Pascal arch, 3840 CUDA cores |

 Titan cosumes more power
 Titan Xp: board TDP 250 W, 471 mm?in 16nm
 NVDLA IP: 766 mW peak, 3.3 mm?in 16nm

Sharing LLC with Accelerator

* Sharing the LLC can be a good . L 6x
alternative to scratchpad 5B o N

= © =64 B blocks
. 1.6
e Consumes less chip area

-0 7 | =——3¢— 128 B blocks
e Less programming effort e W

* Performance does not vary by 079" 0007076 -0-0-0-4
changing the LLC size

* But varies by changing the block size e
0.25 05 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

¢ Streaming dCCesSs pattern. Not much LLC Size (KiB)
data reuse left

* NVDLA minimum burst length: 32B
* Hardware prefetcher should help

Speedup
X

o,.-e

4 ++++++++++++

* Speedup is measured w.r.t design with no LLC

Contention In Memory System

 \We care about worst-case
execution time in real-time
systems

W

solo &3
2.5 "1 41 co-run. E2
+2 co-run. 1R
2 1 +3 co-run. =3
+4 co-run. =3

* Synthetic benchmark is running
on the CPU stressing the
memory system

0.5 oo

Normalized Execution Time
[S]
(@]

L1 LLC DRAM

* NVDLA execution time is

measured * Normalized to solo execution time i.e. running
in isolation

Conclusion

* We integrated NVDLA with a RISC-V SoC on FireSim

* Fast, easy-to-use
* No FPGA board needed: runs on the Amazon could
* Can be used for architectural/system research

* We will be using it for research in real-time embedded systems
* Open-sourced and publicly available at:
https://github.com/CSL-KU/firesim-nvdla/

Google “firesim nvdla”

16

https://github.com/CSL-KU/firesim-nvdla/

17

e Questions?

