
DeepPicar: A Low-cost Deep Neural Network-based
Autonomous Car

Michael Garrett Bechtel, Elise McEllhiney, Heechul Yun
{m783b224, e908m429, heechul.yun}@ku.edu

University of Kansas, USA

Abstract—We present DeepPicar, a low-cost deep neural net-
work (DNN) based autonomous car platform. DeepPicar is a
small scale replication of a real self-driving car called Dave-
2 by NVIDIA, which drove on public roads using a deep
convolutional neural network (CNN), that takes images from a
front-facing camera as input and produces car steering angles as
output. DeepPicar uses the exact same network architecture—9
layers, 27 million connections and 250K parameters—and can
be trained to drive itself, in real-time, using a web camera and a
modest Raspberry Pi 3 quad-core platform. Using DeepPicar, we
analyze the Pi 3’s computing capabilities to support end-to-end
deep learning based real-time control of autonomous vehicles.
We also systematically compare other contemporary embedded
computing platforms using the DeepPicar’s CNN based real-time
control software as a workload. We find all tested platforms,
including the Pi 3, are capable of supporting deep-learning
based real-time control, from 20 Hz up to 100 Hz depending on
hardware platform. However, shared resource contention remains
an important issue that must be considered in applying deep-
learning models on shared memory based embedded computing
platforms.

I. INTRODUCTION

Autonomous cars have been a topic of increasing interest
in recent years as many companies are actively developing
related hardware and software technologies toward fully au-
tonomous driving capability with no human intervention. Deep
neural networks (DNNs) have been successfully applied in
various perception and control tasks in recent years. They
are important workloads for autonomous vehicles as well. For
example, Tesla Model S was known to use a specialized chip
(MobileEye EyeQ), which used a deep neural network for
vision-based real-time obstacle detection and avoidance. More
recently, researchers are investigating DNN based end-to-end
control of cars [3] and other robots. It is expected that more
DNN based Artificial Intelligence workloads may be used in
future autonomous vehicles.

Executing these AI workloads on an embedded computing
platform poses several additional challenges. First, many AI
workloads in vehicles are computationally demanding and
have strict real-time requirements. For example, latency in a
vision-based object detection task may be directly linked to
safety of the vehicle. This requires a high computing capacity
as well as the means to guaranteeing the timings. On the
other hand, the computing hardware platform must also satisfy
cost, size, weight, and power constraints, which require a
highly efficient computing platform. These two conflicting

requirements complicate the platform selection process as
observed in [14].

To understand what kind of computing hardware is needed
for AI workloads, we need a testbed and realistic workloads.
While using a real car-based testbed would be most ideal, it
is not only highly expensive, but also poses serious safety
concerns that hinder development and exploration. Therefore,
there is a strong need for safer and less costly testbeds.
There are already several relatively inexpensive RC-car based
testbeds, such as MIT’s RaceCar [16] and UPenn’s F1/10
racecar [1]. However, these RC-car testbeds still cost more
than $3,000, requiring considerable investment.

Instead, we want to build a low cost testbed that still
employs the state-of-the art AI technologies. Specifically, we
focus on a end-to-end deep learning based real-time control
system, which was developed for a real self-driving car,
NVIDIA DAVE-2 [3], and use the same methodology on a
smaller and less costly setup. In developing the testbed, our
goals are (1) to analyze real-time issues in DNN based end-
to-end control; and (2) to evaluate real-time performance of
contemporary embedded platforms for such workload.

In this paper, we present DeepPicar, a low-cost autonomous
car platform for research. From a hardware perspective, Deep-
Picar is comprised of a Raspberry Pi 3 Model B quad-core
computer, a web camera and a RC car, all of which are af-
fordable components (less than $100 in total). The DeepPicar,
however, employs state-of-the-art AI technologies, including
a vision-based end-to-end control system that utilizes a deep
convolutional neural network (CNN). The network receives an
image frame from a single forward looking camera as input
and generates a predicted steering angle value as output at
each control period in real-time. The network has 9 layers,
about 27 million connections and 250 thousand parameters
(weights). The network architecture is identical to that of
NVIDIA’s DAVE-2 self-driving car [3], which uses a much
more powerful computer (Drive PX computer [12]) than a
Raspberry Pi 3. We chose to use a Pi 3 not only because of
its affordability, but also because it is representative of today’s
mainstream low-end embedded multicore platforms found in
smartphones and other embedded devices.

We apply a standard imitation learning methodology to train
the car to follow tracks on the ground. We collect data for
training and validation by manually controlling the RC car and
recording the vision (from the webcam mounted on the RC-
car) and the human control inputs. We then train the network



offline using the collected data on a desktop computer, which
is equipped with a NVIDIA GTX 1060 GPU. Finally, the
trained network is copied back to the Raspberry Pi, which
is then used to perform inference operations—locally on the
Pi—in the car’s main control loop in real-time. For real-time
control, each inference operation must be completed within the
desired control period (e.g., 50 ms period for 20 Hz control
frequency).

Using the DeepPicar platform, we systematically analyze
its real-time capabilities in the context of deep-learning based
real-time control, especially on real-time deep neural network
inferencing. We also evaluated other, more powerful, embed-
ded computing platforms to better understand achievable real-
time performance of DeepPicar’s deep-learning based control
system and the impact of computing hardware architectures.

We find that the DeepPicar is capable of completing control
loops in under 50 ms, or 20 hz, and can do so almost
99% of the time. Other tested embedded platforms, Intel Up
and NVIDIA TX2, offer even better performance, capable of
supporting deep-learning based real-time control up to 100
Hz control frequency on the TX2 when the GPU is used.
However, in all platforms, shared resource contention remains
an important issue as we observe up to 9.6X control loop
execution time increase, mostly due to increase in the nueral
network inferencing operation, when memory performance
intensive applications are co-scheduled on idle CPU cores.

The contributions of this paper are as follows:

• We present the design and implementation of a low-cost
autonomous vehicle testbed, DeepPicar, which utilizes
state-of-the-art artificial intelligence techniques.

• We provide an analysis and case-study of real-time issues
in the DeepPicar.

• We systematically compare real-time computing capabil-
ities of multiple embedded computing platforms in the
context of vision-based autonomous driving.

The remaining sections of the paper are as follows: Section
II provides a background of applications in autonomous driv-
ing and related works. Section III gives an overview of the
DeepPicar platform, including the high-level system and the
methods used for training and inference. Section IV presents
our evaluation of the platform and how different factors can
affect performance. Section V gives a comparison between the
Raspberry Pi 3 and other embedded computing platforms to
determine their suitably for autonomous driving research. The
paper finishes with conclusions in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we provide background and related work
on the application of deep learning in robotics, particularly
autonomous vehicles.

A. End-to-End Deep Learning for Autonomous Vehicles

To solve the problem of autonomous driving, a standard
approach has been decomposing the problem into multiple

sub-problems, such as lane marking detection, path plan-
ning, and low-level control, which together form a process-
ing pipeline [3]. Recently, researchers are exploring another
approach that dramatically simplifies the standard control
pipeline by applying deep neural networks to directly produce
control outputs from senor inputs [11]. Figure 1 shows the
differences between two approaches.
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Fig. 1: Standard robotics control vs. DNN based end-to-end
control. Adopted from [10].

The use of neural networks for end-to-end control of au-
tonomous car was first demonstrated in late 1980s [15], using
a small 3-layer fully connected neural network; and subse-
quently in a DARPA Autonomous Vehicle (DAVE) project in
early 2000s [9], using a 6 layer convolutional neural network
(CNN); and most recently in NVIDIA’s DAVE-2 project [3],
using a 9 layer CNN. In all of these projects, the neural
network models take raw image pixels as input and directly
produce steering control commands, bypassing all interme-
diary steps and hand-written rules used in the conventional
robotics control approach. NVIDIA’s latest effort reports that
their trained CNN autonomously controls their modified cars
on public roads without human intervention [3].

Using deep neural networks involves two distinct
phases [13]. The first phase is training during which
the weights of the network are incrementally updated by
backpropagating errors it sees from the training examples.
Once the network is trained—i.e., the weights of the network
minimize errors in the training examples—the next phase
is inferencing, during which unseen data is fed to the
network as input to produce predicted output (e.g., predicted
image classification). In general, the training phase is more
computationally intensive and requires high throughput,
which is generally not available on embedded platforms.
The inferencing phase, on the other hand, is relatively less
computationally intensive and latency becomes as important,
if not moreso, as computational throughput, because many
use-cases have strict real-time requirements (e.g., search
query latency).

B. Embedded Computing Platforms for Real-Time Inferencing

Real-time embedded systems, such as an autonomous ve-
hicle, present unique challenges for deep learning, as the
computing platforms of such systems must satisfy two often
conflicting goals [14]: The platform must provide enough com-
puting capacity for real-time processing of computationally
expensive AI workloads (deep neural networks); The platform
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Fig. 2: DeepPicar platform.

must also satisfy various constraints such as cost, size, weight,
and power consumption limits.

Accelerating AI workloads, especially inferencing opera-
tions, has received a lot of attention from academia and
industry in recent years as applications of deep learning are
broadening to areas of real-time embedded systems such as
autonomous vehicles. These efforts include the development
of various heterogeneous architecture-based system-on-a-chips
(SOCs) that may include multiple cores, GPU, DSP, FPGA,
and neural network optimized ASIC hardware [7]. Consoli-
dating multiple tasks on SoCs with lots of shared hardware
resources while guaranteeing real-time performance is also an
active research area, which is orthogonal to improving raw
performance. Consolidation is necessary for efficiency, but
unmanaged interference can nullify the benefits of consolida-
tion [8]. For these reasons, finding a good computing platform
is a non-trivial task, one that requires a deep understanding of
the workloads and the hardware platform being utilized.

The primary objectives of this study are to understand
(1) the necessary computing performance for applying AI
technology-based robotics systems, and (2) what kind of com-
puting architecture and runtime supports are most appropriate
for such workload. To achieve these goals, we implement
a low-cost autonomous car platform as a case-study and
systematically conduct experiments, which we will describe
in the subsequent sections.

III. DEEPPICAR OVERVIEW

In this section, we provide an overview of our DeepPicar
platform. In developing DeepPicar, one of our primary goals
is to replicate the NVIDIA’s DAVE-2 system on a smaller
scale with using a low cost multicore platform, Raspberry Pi
3. Because the Pi 3’s computing performance is much lower
than that of the DRIVE PX platform used in DAVE-2, we

Item Cost ($)
Raspberry Pi 3 Model B 35

New Bright 1:24 scale RC car 10
Playstation Eye camera 7

Pololu DRV8835 motor hat 8
External battery pack & misc. 10

Total 70

TABLE I: DeepPicar’s bill of materials (BOM)

10 neurons

50 neurons

100 neurons

1164 neurons

conv1: 24@31x98
convolutional layer

conv2: 36@14x47
convolutional layer

conv3: 48@5x22
convolutional layer

conv4: 64@3x20
convolutional layer

conv5: 64@1x18
convolutional layer

input: 200x66 RGB pixels

fc4: fully-connected layer
fc3: fully-connected layer
fc2: fully-connected layer
fc1: fully-connected layer

output: steering angle

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

Fig. 3: DeepPicar’s neural network architecture: 9 layers (5
convolutional, 4 fully-connected layers), 27 million connec-
tions, 250K parameters. The architecture is identical to the
one used in NVIDIA’s real self-driving car [3].

are interested in if, and how, we can process computationally
expensive neural network operations in real-time. Specifically,
inferencing (forward pass processing) operations must be
completed within each control period duration—e.g., a WCET
of 50ms for 20Hz control frequency—locally on the Pi 3
platform, although training of the network (back-propagation
for weight updates) can be done offline and remotely using a
desktop computer.

Figure 2 shows the DeepPicar, which is comprised of
a set of inexpensive components: a Raspberry Pi 3 Single
Board Computer (SBC), a Pololu DRV8835 motor driver, a
Playstation Eye webcam, a battery, and a 1:24 scale RC car.
Table I shows the estimated cost of the system.

For the neural network architecture, we adopt a TensorFlow
version of NVIDIA DAVE-2’s convolutional neural network
(CNN), published by Dr. Fridman at MIT 1. As in DAVE-2, the
CNN takes a raw color image (200x66 RGB pixels) as input
and produces a single steering angle value as output. Figure 3
shows the network architecture, which is comprised of 9
layers, 250K parameters, and about 27 million connections.

To collect the training data, a human pilot manually drives
the RC car on a small track we created (Figure 4) to record
timestamped videos and contol commands. The stored data is

1https://github.com/lexfridman/deeptesla
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Fig. 4: One of the custom tracks used for training/testing.

while True:
# 1. read from the forward camera
frame = camera.read()
# 2. convert to 200x66 rgb pixels
frame = preprocess(frame)
# 3. perform inferencing operation
angle = DNN_inferencing(frame)
# 4. motor control
steering_motor_control(angle)
# 5. wait till next period begins
wait_till_next_period()

Fig. 5: Control loop

then copied to a desktop computer, which is equipped with
a NVIDIA GTX 1060 GPU, where we train the network to
accelerate training speed. For comparison, training the network
on the Raspbeery Pi 3 takes approximately 4 hours, whereas
it takes only about 5 minutes on the desktop computer using
the GTX 1060 GPU.

Once the network is trained on the desktop computer, the
trained model is copied back to the Raspberry Pi. The network
is then used by the car’s main controller, which feeds a
image frame from the web camera as input to the network.
In each control period, the produced steering angle output
is then converted as the PWM values of the steering motor
of the car. Figure 5 shows simplified pseudo code of the
controller’s main loop. Among the five steps, the 3rd step,
network inferencing, is the most computationally intensive and
dominates the execution time.

Note that although the steering angle output of the network
angle is a continuous real value, the RC car platform we used
unfortunately only supports three discrete angles—left (-30◦),
center (0◦), and right (+30◦)—as control inputs. Currently,
we approximate the network generated real-valued angle to
the closest one of the three angles, which may introduce
inaccuracy in control. In the future, we plan to use a different
(more expensive) RC car platform that can precisely control

Fig. 6: Measuring DeepPicar’s camera latency.

the car’s steering angle. We would like to stress, however,
that the use of different RC car platforms has no impact on
the computational aspects of the system, and that our main
focus of this study is not in improving network accuracy but
in closely replicating the DAVE-2’s network architecture and
its real-time characteristics.

Another issue we observed in training/testing the network,
which could affect the network performance, is camera latency.
In DeepPicar’s context, the camera latency is from the time
the camera sensor observes the scene to the time the computer
actually reads the digitized image data. Unfortunately, this
time can be significantly long depending on the camera
and the performance of the Pi. We experimentally measure
DeepPicar’s camera latency as follows 2. First, we point the
DeepPicar’s camera towards a computer monitor, which is
conntected to the Raspberry Pi 3’s HDMI output. We then
launch a program that overlays the current time with the
camera’s preview screen on the monitor. Then, an infinite
number of time strings will be shown on the monitor screen
and the time difference between two successive time strings
represent the camera latency. Figure 6 shows the captured
moniotor screen. The measured camera latency is about 300-
350 ms. This is significantly higher than the latency of human
perception, which is known to be as fast as 13 ms [17]. Higher
camera latency could negatively affect control performance,
because the DNN would analyze stale scenes. In the future,
we plan to identify and use low-latency cameras.

Despite these issues, the trained models were still able to
achieve a reasonable degree of accuracy, successfully navi-
gating several different tracks we trained. The source code,
build instruction, and a collection of self-driving videos of the
DeepPicar can be found at: https://github.com/heechul/picar.

IV. EVALUATION

In this section, we experimentally analyze various real-
time aspects of the DeepPicar. This includes (1) measurement
based worst-case execution time (WCET) analysis of deep

2We follow the method and the tool found at
https://www.makehardware.com/2016/03/29/finding-a-low-latency-webcam/
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Operation Mean Max 99pct. Stdev.
Image capture 2.28 4.94 4.54 0.52

Image pre-processing 3.09 4.60 3.31 0.10
DNN inferencing 37.30 51.03 45.48 2.75

Total Time 42.67 56.37 50.70 2.80

TABLE II: Control loop timing breakdown.

learning inferencing, (2) the effect of using multiple cores
in accelerating inferencing, (3) the effect of co-scheduling
multiple deep neural network models, and (4) the effect of
co-scheduling memory bandwidth intensive co-runners.

A. Setup

The Raspberry Pi 3 Model B platform used in DeepPicar
equips a Boardcom BCM2837 SoC, which has a quad-core
ARM Cortex-A53 cluster, running at up to 1.2GHz. Each core
has 16K private I&D caches, and all cores share a 512KB L2
cache. The chip also includes Broadcom’s Videocore IV GPU,
although we did not use the GPU in our evaluation due to the
lack of sofware support (TensorFlow is not compatible with
the Raspberry Pi’s GPU). For software, we use Ubuntu MATE
16.04, TensorFlow 1.1 and Python 2.7. We disabled DVFS
(dynamic voltage frequency scaling) and configured the clock
speed of each core statically at the maximum 1.2GHz.

B. Inference Timing for Real-Time Control

For real-time control of a car (or any robot), the control
loop frequency must be sufficiently high so that the car can
quickly react to the changing environment and its internal
states. In general, control performance improves when the
frequency is higher, though computation time and the type
of the particular physical system are factors in determining
a proper control loop frequency. While a standard control
system may be comprised of multiple control loops with
differing control frequencies—e.g., an inner control loop for
lower-level PD control, an outer loop for motion planning,
etc.—DeepPicar’s control loop is a single layer, as shown
earlier in Figure 5, since a single deep neural network replaces
the traditional multi-layer control pipline. (Refer to Figure 1
on the differences between the standard robotics control vs.
end-to-end deep learning approach). This means that the
DNN inference operation must be completed within the inner-
most control loop update frequency. To understand achievable
control-loop update frequencies, we experimentally measured
the execution times of DeepPicar’s DNN inference operations.

Figure 7 shows the measured control loop processing times
of the DeepPicar over 1000 image frames (one per each control
loop). We omit the first frame’s processing time for cache
warmup. Table II shows the time breakdown of each control
loop. Note that all four CPU cores of the Raspberry Pi 3 were
used by the TensorFlow library when performing the DNN
inference operations.

First, as expected, we find that the inference operation dom-
inates the control loop execution time, accounting for about
85% of the execution time. Second, and more importantly,
we also find that the measured average execution time of
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Fig. 7: DeepPicar’s control loop processing times over 1000
input image frames.

a single control loop is 42.67 ms, or 23.4 Hz and the 99
percentile time is 50.70 ms. This means that the DeepPicar
can operate at about a 20 Hz control frequency in real-time
using only the on-board Raspberry Pi 3 computing platform, as
no remote computing resources were necessary. We consider
these results respectable given the complexity of the deep
neural network, and the fact that the inference operation
performed by TensorFlow only utilizes the CPU cores of the
Raspberry Pi 3 (its GPU is not supported by Tensorflow).

In comparison, NVIDIA’s DAVE-2 system, which has the
exact same neural network architecture, reportedly runs at 30
Hz [3], which is just a bit faster than the DeepPicar. Although
we believe it was not limited by their computing platform (we
will experimentally compare performance differences among
multiple embedded computing platforms, including NVIDIA’s
Jetson TX2, later in Section V), the fact that the low-cost Rasp-
berry Pi 3 can achieve similar real-time control performance
is surprising.

C. Effect of the Core Count to Inference Timing

In this experiment, we investigate the scalability of perform-
ing inference operations of DeepPicar’s neural network with
respect to the number of cores. As noted earlier, the Raspberry
Pi 3 platform has four Cortex-A53 cores and TensorFlow
provides a programmable mechanism to adjust how many
cores are to be used by the library. Leveraging this feature,
we repeat the same experiment described in the previous
subsection with varying numbers of CPU cores—from one
to four.

Figure 8 shows the average execution time of the control
loop as we vary the number of cores used by TensorFlow. As
expected, as we assign more cores, the average execution time
decreases—from 61.96 ms on a single core to 42.67 ms on four
cores (a 30% improvement). However, the improvement is far
from an ideal linear scaling. In particular, from 2 cores to 3
cores, the improvement is mere 2.38 ms (or 4%). In short, we
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Fig. 8: Average control loop execution time vs. #of CPU cores.

find that the scalability of DeepPicar’s deep neural network is
not ideal on the platform. We do not know whether it is due
to the limitations of TensorFlow’s multicore implementation
or if it’s the model’s inherent characteristics.

The poor scalability opens up the possibility of consolidat-
ing multiple different tasks or different neural network models
rather than allocating all cores for a single neural network
model. For example, it is conceivable to use four cameras and
four different neural network models, each of which is trained
separately and executed on a single dedicated core. Assuming
we use the same network architecture for all models, then one
might expect to achieve up to 15 Hz using one core (given 1
core can deliver 62 ms average execution time). In the next
experiment, we investigate the feasibility of such a scenario.

D. Effect of Co-scheduling Multiple DNN Models

In this experiment, we launch multiple instances of Deep-
Picar’s DNN model at the same time and measure its impact
on their inference timings. In other words, we are interested
in how shared resource contention affects inference timing.
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Fig. 9: Timing impact of co-scheduling multiple DNNs.
1Nx1C: one DNN model using one core; 4Nx1C: four DNN
models each using one core; 1Nx2C: one DNN model using
two cores; 2Nx2C: two DNN models each using two cores.

Figure 9 shows the results. In the figure, the X-axis
shows the system configuration: #of DNN models x #of CPU
cores/DNN. For example, ’4Nx1C’ means running four DNN
models each of which is assigned to run on one CPU core,
whereas ’2Nx2C’ means running two DNN models, each of
which is assigned to run on two CPU cores. The Y-axis
shows the average inference timing. The two bars on the
left show the impact of co-scheduling four DNN models.
Compared to executing a single DNN model on one CPU core
(1Nx1C), when four DNN models are co-scheduled (4Nx1C),
each model suffers an average inference time increase of
approximately 15 ms, ∼24%. On the other hand, when two
DNN models, each using two CPU cores, are co-scheduled
(2Nx2C), the average inference timing is increased by about
7 ms, or 10%, compared to the baseline of running one model
using two CPU cores (1Nx2C).
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Fig. 10: L2 cache miss rates of different neural network and
core assignments. X-axis is the same as Figure 9.

These increases in inference times in the co-scheduled
scenarios are expected and likely caused by contention in
the shared hardware resources, such as the shared L2 cache
and/or the DRAM controller. To further analyze the source
of contention, we use hardware performance counters of the
processor. Specifically, we measure L2 miss rates of the DNN
models first in isolation and then after co-scheduling other
models. If the shared L2 cache is the primary source of
inteference, then the measured L2 miss rates will increase.
Figure 10 shows the results. As can be see in the figure,
L2 miss rates are largely unchanged regardless of whether
multiple models are co-scheduled or not. This suggests that
the shared L2 cache is not the bottleneck that caused execution
time increases. In other words, DNN models don’t appear
to be sensitive to the shared L2 cache space. Instead, we
hypothesize that it is likely caused by the memory controller—
the only other major shared hardware source—where memory
requests from different CPU cores contend, which would
result in increased memory access latency. While some Intel
processors provide incore hardware counters that can measure
average memory access latency [19], we were not able to
identify whether such hardware counters exist in the BCM2837
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processor of Raspberry Pi 3 due to the lack of documentation.
Instead, in the next experiment, we use memory intensive
synthetic benchmarks to test the hypothesis.

E. Effect of Co-scheduling Memory Performance Hogs

In order to determine how contended DRAM requests affect
the DNN inference timing of the DeepPicar, we use a synthetic
memory intensive benchmark from the IsolBench suite [18].

We run a single DNN model one core, and co-schedule an
increasing number of the memory intensive synthetic bench-
marks 3, on the remaining idle cores.
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Fig. 11: Effect of memory performance hogs on the DNN
inferencing. The DNN model uses Core 0 and memory-hog
co-runners use the rest of the cores.

Figure 11 shows the normalized execution time and L2
miss-rate of the DNN model running on the Core 0 as a func-
tion of the number of co-scheduled memory intensive synthetic
benchmarks. First, as we increase the number of co-runners,
the DNN model’s execution times are increased—by up to
9.6X—even though the DNN model is running on a dedicated
core (Core 0). On the other hand, the DNN model’s L2 cache-
miss rates do not increase as much. This suggests that the
DNN model’s exeuction increase cannot be fully explained by
increases in L2 cache-misses. Instead, as we hypothesized in
the previous experiment, the increased memory pressure from
the co-scheduled memory intensive benchmarks is likely the
primary cause of the DNN model’s execution time increase.
Therefore, we conclude that DeepPicar’s DNN model is more
senstive to DRAM access latency than L2 cache space.

This observation suggests that shared cache partitioning
techniques [5], [8] may not be effective isolation solutions for
DeepPicar, as its AI workload is more sensitive to memory
performance. Instead, memory controller focused isolation
solutions, either hardware or software-based ones (e.g., [6],
[21]), may be more important. Although our observation is
made on a single hardware platform running on a single DNN
workload, we suspect that many AI workloads may exhibit
similar characteristics.

3We use the Bandwidth benchmark in the IsolBench suite, with the follow-
ing command line parameters: $ bandwdith -a write -m 16384

F. Summary of the Findings

So far, we have evaluated DeepPicar’s real-time character-
istics from the perspective of end-to-end deep learning based
real-time control, and made several observations.

First, we find that DeepPicar’s computing platform, the
Raspberry Pi 3 Model B, offers adquate computing capacity
to perform real-time control of the RC car at 20 Hz frequency
(or 50ms per control loop). Given the complexity of the
DNN used, we were pleasantly suprised by this finding. The
time breakdown shows that the DNN inferencing operation,
performed by the Tensorflow library, dominates the execution
time, which is expected.

Second, we find that scalability of Tensorflow’s DNN im-
plementation is limited. We find that using all four cores is
only about 30% better than using just a single core.

Third, we find that consolidating multiple DNN models—
on different CPU cores—is feasible as we find: (1) DNN
performance using a single core is not much worse than using
multiple cores; (2) multiple DNN models running simultane-
ously do not cause severe interference with each other.

Lastly, we find that consolidating memory (DRAM) per-
formance intensive applications could jeopadize DNN perfor-
mance, because DNN performance appears to be very sensitive
to memory performance; we observe up to 9.6X slowdown
in DNN performance by co-scheduling synthetic memory
bandwidth intensive applications on idle cores.

V. EMBEDDED COMPUTING PLATFORM COMPARISON

In this section, we compare three computing platforms—
the Raspberry Pi 3, the Intel UP 4 and NVIDIA Jetson
TX2 5—from the point of view of supporting end-to-end
deep learning based autonomous vehicles. Table III shows
architectural features of the three platforms 6.

Our basic approach is to use the same DeepPicar software,
and repeat the experiments in Section IV on each hardware
platform and compare the results. For the Jetson TX2, we have
two different system configurations, which differ in whether
TensorFlow is configured to use its GPU or only the CPU
cores. Thus, the total four system configurations are compared.

Figure 12 shows the average control loop completion timing
of the four system configurations we tested as a function of
the number of CPU cores used. First, both the Intel UP and
Jetson TX2 exhibit superior performance when compared with
the Raspberry Pi 3. When all four CPU cores are used, the
Intel UP is 2.53X faster than the Pi 3, while the TX2 (CPU)
and TX2 (GPU) are 3.6X and 7.6X times faster, respectively,
than the Pi 3. As a result, they are all able to satisfy the 50
ms WCET by a clear margin, and, in case of TX2, 50 Hz or
even 100 Hz real-time control is feasible with the help of its
GPU. Another observation is that TX2 (GPU) does not change

4http://www.up-board.org/up/
5http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
6The GPUs of the Raspberry Pi 3 and Intel Up are not used in evaluation

due to the lack of software (TensorFlow) support. Also, the two Denver cores
in Tegra TX2 are not used in evaluation due to TensorFlow issues.
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Item Raspberry Pi 3 (B) Intel UP NVIDIA Jetson TX2
BCM2837 X5-Z8350 (Cherry Trail) Tegra X2

CPU 4x Cortex-A53@1.2GHz/512KB L2 4x Atom@1.92GHz/2MB L2 4x Cortex-A57@2GHz/2MB L2
2x Denver@2.0GHz/2MB L2 (not used)

GPU VideoCore IV (not used) Intel HD 400 Graphics (not used) Pascal 256 CUDA cores
Memory 1GB LPDDR2 2GB DDR3L 8GB LPDDR4

TABLE III: Compared embedded computing platforms
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Fig. 12: Average control loop execution time.

much, as most of the neural network computation is done at
the GPU.
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Fig. 13: Average control loop execution time when multiple
DNN models are co-scheduled.

The Intel UP board and Jetson TX2 also perform much
better when multiple DNN models are co-scheduled. Figure 13
shows the results of the multi-model co-scheduling experi-
ment. Once again, they can comfortably satisfy 20 Hz real-
time performance for all of the co-scheduled DNN control
loops, and in the case of the TX2 (GPU), 100 Hz real-time
control is still feasible. Given that the GPU must be shared
among the co-scheduled DNN models, the results suggest that
the TX2’s GPU has sufficient capacity to accomodate multiple
instances of the DNN model we tested.

Finally, we compare the effect of co-scheduling memory
bandwidth intensive synthetic benchmarks on the DNN control
loop timing. Figure 14 shows the results. As discussed in
Section IV-E, we observed dramatic execution time increases,
up to 9.4X, in Raspberry Pi 3 as we increased the number of
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Fig. 14: Average control loop execution time in the presence
of an increasing number of memory intensive applications on
idle CPU cores.

co-scheduled tasks. We also observe increased control loop
execution timing in the Intel Up and Jetson TX2, but the
degree of the increase is not as dramatic as the Pi 3. Compared
to their respective solo timings (i.e., the model runs on a
single core in isolation), Intel UP suffers up to 2.3X execution
time increase; TX2 (CPU) and TX2 (GPU) suffer up to 2.2X
and 2.5X increases, respectively. This is somewhat suprising
because the Raspberry Pi 3’s cores are in-order architecture
based while the cores in the Intel Up and NVIDIA TX2 are
out-of-order architecture based, and that the memory intensive
tasks on out-of-order cores can generate more memory traffic.
We suspect that this is because the memory subsystems in the
Intel UP and TX2 platforms provide higher bandwidth and
fairness than the memory subsystem of the Pi 3.

Another interesting observation is that the TX2 (GPU) also
suffers considerable execution time increase (2.5X) despite the
fact that the co-scheduled synthetic tasks do not utilize the
GPU. In other words, the DNN model has dedicated access to
the GPU. This is, however, a known characteristic of integrated
CPU-GPU architectue based platforms where both CPU and
GPU share the same memory subsystem [2]. As a result, the
TX2 (GPU) fails to meet the 10ms deadline for 100 Hz control
that would have been feasible if there was no contention
between the CPU cores and the GPU.

In summary, we find that today’s embedded computing
platforms, even as inexpensive as a Raspberry Pi 3, are pow-
erful enough to support vision and end-to-end deep learning
based real-time control applications. Furthermore, availability
of CPU cores and GPU on these platforms allow consolidating
mutiple deep neural network based AI workloads. However,
shared resource contention among these diverse computing
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resources remains an important issue that must be understood
and controlled, especially for safety-critical applications.

VI. CONCLUSION

We presented DeepPicar, a low cost autonomous car plat-
form that is inexpensive to build, but is based on state-of-
the-art AI technology: End-to-end deep learning based real-
time control. Specifically, DeepPicar uses a deep convolutional
neural network to predict steering angles of the car directly
from camera input data in real-time. Importantly, DeepPicar’s
neural network architecture is identical to that of NVIDIA’s
real self-driving car.

Despite the complexity of the neural network, DeepPicar
uses a low-cost Raspberry Pi 3 quad-core computer as its sole
computing resource. We systematically analyzed the real-time
characteristics of the Pi 3 platform in the context of deep-
learning based real-time control appilcations, with a special
emphasis on real-time deep neural network inferencing. We
also evaluated other, more powerful, embedded computing
platforms to better understand achievable real-time perfor-
mance of DeepPicar’s deep-learning based control system and
the impact of computing hardware architectures. We find all
tested embedded platforms, including the Pi 3, are capable
of supporting deep-learning based real-time control, from 20
Hz up to 100 Hz, depending on the platform and its system
configuration. However, shared resource contention remains
an important issue that must be considered in applying deep-
learning models on shared memory based embedded comput-
ing platforms.

As future work, we plan to apply shared resource man-
agement techniques [21], [20] on the DeepPicar platform
and evaluate their impact on the real-time performance of
the system. We also plan to improve the prediction accuracy
by feeding more data and upgrading the RC car hardware
platform to enable more precise steering angle control.
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APPENDIX

A. DNN Training and Testing

We have trained and tested the deep neural network with
several different track conditions, different combinations of
input data, and different hyper parameters. In the following
paragraphs, we describe details on two of the training methods
that performed reasonably well.

In the first method, we trained the neural network model
across a set of 30 completed runs on the track seen in Figure 4
by a human pilot. Half of the runs saw the car driving one
way along the track, while the remaining half were of the
car driving in the opposite direction on the track. In total,
we collected 2,556 frames for training and 2,609 frames for
validation. The weights of the network are initialized using a
Xavier initializer [4], which is known to provide better initial
values than the random weight assignment method. In each
training step, we use a batch size of 100 frames, which are
randomly selected among all the collected training images, to
optimize the network. We repeat this across 2,000 training
steps. When a model was trained with the aformentioned
data, the training loss was 0.0188 and the validation loss was
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Fig. 15: Change in loss value throughout training.

0.0132. The change of the loss value over the course of model
training can be seen in Figure 15.

In the second method, we use the same data and parameters
as above except that now images are labeled as ’curved’ and
’straight’ and we pick an equal number of images from each
category at each training step to update the model. In other
words, we try to remove bias in selecting images. We find that
the car performed better in practice by applying this approach
as the car displayed a greater ability to stay in the center of
the track (on the white tape). However, we find that there is a
huge discrepency between the training loss and the validation
loss as the former was 0.009, while the latter was 0.0869—
a 10X difference—indicating that the model suffers from an
overfitting problem.

We continue to investigate ways to achieve better prediction
accuracy in training the network, as well as improving the
performance of the RC car platform, especially related to
precise steering angle control.

B. System-level Factors Affecting Real-Time Performance

In using the Raspberry Pi 3 platform, there are a few system-
level factors, namely power supply and temperature, that need
to be considered to achieve consistent and high real-time
performance.

In all our experiments on the Raspberry Pi 3, the CPU
operated at a preferred clock speed of 1.2 GHz. However,
without care, it is possible for the CPU to operate at a lower
frequency.

An important factor is CPU thermal throttling, which can
affect CPU clock speed if the CPU temperature is too high
(Pi 3’s firmware is configured to throttle at 85C). DNN
model operations are computationally intensive, thus it is
possible for the temperature of the CPU to rise quickly. This
can be especially problematic in situations where multiple
DNN models are running simultaneously on the Pi 3. If the
temperature reaches the threshold, the Pi 3’s thermal throttling
kicks in and decreases the clock speed down to 600MHz—
half of the maximum 1.2GHz—so that the CPU’s temperature
stays at a safe level. We found that without proper cooling

solutions (heatsink or fan), prolonged use of the system would
result in CPU frequency decrease that may affect evaluation.

Another factor to consider is power supply. From our
experiences, the Pi 3 frequency throttling also kicks in when
the power source can not provide the required minimum of
2A current. In experiments conducted with a power supply
that only provided 1 Amp, the Pi was unable to sustain a 1.2
GHz clock speed, and instead, fluctuated between operating
at 600 MHz and 1.2 GHz. As a result, it is necessary, or at
least highly recommended, that the power supply used for the
Raspberry Pi 3 be capable of outputting 2 Amps, otherwise
optimal performance isn’t guaranteed.

Our initial experiment results suffered from these issues, af-
ter which we always carefully monitored the current operating
frequencies of the CPU cores during the experiments to ensure
the correctness and repeatability of the results.
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