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Abstract Since shared data are accessed through synchronizations
and the patterns by which threads synchronizes are repet-
Though shared virtual memory (SVM) systems promiseitive, a prefetching scheme based on such repetitiveness
low cost solutions for high performance computing, they would reduce memory latencies. Prefetching can be used
suffer from long memory latencies. These latencies are usuo reduce these latencies by fetching data in advance before
ally caused by repetitive invalidations on shared data. Since actual data accesses.
shared data are accessed through synchronizations and the Based on this observation, we propose a prefetching
patterns by which threads synchronizes are repetitive, atechnique in which the data invalidated after a repetitive
prefetching scheme based on such repetitiveness would resynchronization pattern are prefetched at proper times. Our
duce memory latencies. Based on this observation, we proprefetching technique analyzes past data access history per
pose a prefetching technique which predicts future accesssynchronization variable, then adaptively chooses between
behavior by analyzing access history per synchronization history mode and stride mode prefetching. If it is found
variable. Our technique was evaluated on an 8-node SVMthat there is no particular access pattern, we don't issue
system using the SPLASH-2 benchmark. The results showrefetches.
that our technigue could achieve 34% — 45% reduction in ~ To evaluate our technique, we ran four applications
memory access latencies. from SPLASH-2 using KDSM (KAIST Distributed Shared
Memory) on 8-PC Linux cluster. The results show that
our technique could achieve 34% — 45% reduction in mem-
ory access latencies for three applications. By comparing
with other techniques, we illustrate that considering syn-
chronization variables makes prediction more accurate.
Research on cluster systems such as NOW (Network  The rest of this paper is organized as follows. In sec-

of Workstations) has been fueled by the availability of tjon 2, experimental methodology and preliminary results
powerful microprocessors and high-speed networks. SVM 4y given. In section 3, we discuss related work. In section

(Shared Virtual Memory) systems provide shared memory 4, e describe our prefetching technique which can effec-
abstraction between machines using virtual memory hard'tively reduce memory access latencies. In section 5, we

ware [8, 2]. But, long remote memory access latencies havereport experimental results. Finally, conclusions are given
been a major obstacle to performance improvement of SVM i, section 6.

systems.

To reduce memory latencies, most SVM systems use the . .
following approaches: (1) to convert remote accesses into2 Experimental Methodology and Prelimi-
local ones by caching, (2) to delay communications using ~ nary Results
relaxed memory model such as LRC (Lazy Release Consis-
tency) [7], and (3) to reduce effects of false sharing using  To examine impact of remote memory access latencies
multiple-writer protocol. But, remaining latencies are still on SVM performance, we performed experiments on 8-PC
significant. Linux cluster which are connected by 100 Mbps Switched

Fast Ethernet. Each PC contains 500 MHz Pentium Il CPU
0This research is supported by KISTEP under the National Research and 256 MB main memory
Laboratory program. )

1 Introduction




mEusy @ Synchronization T Page Faull Tim consists of the following components: (1) time spent doing
useful computation (2) synchronization (lock and barrier)
(3) time spent handling page faults (this includes both local
and remote faults, but almost all the time is spent handling
remote ones). From figure 1, we can see that most applica-
tions spend much time (about 26% — 62%) handling page
faults. Prefetching can be used to reduce these remote ac-
cess overheads.

I 3 Related Work
m B

BARNES  FFT OCEAN  RADIX Bianchini et al. [3] proposed the B+ technique which
issues prefetches for all the invalidated pages at synchro-
nization points.

Figure 1. Execution time breakdown on top of Amza et al. [1] proposed a technique which dynamically
KDSM on 8 processors aggregates pages into larger page group. On a page fault,
all pages in a page group are fetched at the same time. This

2.1 KDSM: KAIST Distributed Shared Memory has a similar effect as prefetching.
Karlsson et al. [5] proposed a history prefetching tech-

KDSM is a full-blown SVM system which has been im- nique that exploits producer-consumer access pattern. If no
plemented from scratch. KDSM is implemented as a user-2CCess pattern is detected, a sequential prefetching is used.
level library running on Linux 2.2.13. Communication layer This technique is a limited one in that it can detect only
is TCP/IP and SIGIO signal handling is used for process- producer-consumer pattern. It is possible for this technique
ing messages from other processes. KDSM uses pagel® issue useless prefetches for irregular applications because
based invalidation protocol, multiple-writer protocol, and it @lways tries to issue prefetches. _
supports HLRC (Home-based Lazy Release Consistency) Bianchini et al. [4] proposed the Adaptive++ tech-
[11]. Cache pages can be one of four states: RO (read-only)lique which adaptively chooses repeated-phase mode and
RW (read-write), INV (invalid), and UNMAP (unmapped). repeated-stride mode. Adaptive++ has a benefit over Karls-
All experiments were performed using round-robin home SON's in that (1) itis not limited to producer-consumer pat-
allocation. Average basic operation costs of KDSM are as €' and (2) it does not issue prefetches when there is no
follow: 1047us for fetching a 4KB page, 258 for acquir- ~ Particular pattern.
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ing a lock, and 1132s for barrier (8 processors). Mowry et al. [9] studied prefetching effectiveness when
prefetching codes are inserted into program source by com-
2.2 Applications piler and programmer. Since this technique analyzes source

code, it can predict future access behavior with high ac-

We ran four applications from SPLASH-2 [10]. curacy even in a case of irregular application. This study
BARNES implements the BARNES-Hut method to simu- Presents the maximum perf'ormance improvements which
late the interaction of a system of 4K bodies. FFT performs ¢an be achieved by prefetching.
a 3-D complex Fast Fourier Transform on 256K data points.
OCEAN simulates large-scale ocean movements based odl  Adaptive Prefetching Technique
eddy and boundary currents. We simulate a 25858
ocean grid. RADIX performs an integer radix sort with 4.1 Prefetching Heuristics
220 keys. BARNES and FFT are restructured versions from
CVM [6] distribution and exhibit highly regular page ac- Our prefetching technique analyzes past data access
cess pattern. OCEAN and RADIX are directly ported to history per synchronization variable, and then adaptively
KDSM from SPLASH-2 and not restructured. RADIX ex- chooses between history mode and stride mode prefetch-
hibits highly irregular pattern and OCEAN exhibits mixed ing. If it is found that there is no particular access pattern,

pattern. we don't issue prefetches. Although this technique can be
applied to both barrier and lock variables, we only deal with
2.3 Preliminary Results barrier variables in this paper. Before we continue to ex-

plain our prefetching technique, we show a simple example
Figure 1 shows an execution time breakdown of appli- which illustrates why we should consider synchronization
cations on top of KDSM on 8 processors. Execution time variables.



4.1.1 A Simple Parallel Program Example predicts that future accesses are going to be similar to these
patterns.

To record access history per barrier variable, we maintain
three lists for each barrier variablast , before _last |,

Figure 2 shows a simple parallel program of an iterative al-
gorithm. This program consists of three parts which are

protected by three barrier variables. Figure 3 shows run'andexpected _In a case of barrier variablmrl , last

time executloE. btehawfor Ofr;[h's ;t)rorg]]_r ahm' If V\t'e texgrt?mteh contains access history at the last barrier phadeaof 's
page access history of each part which IS protected by e, yafor6  Jast  contains access history at the phase be-
same barrier variable, it is evident that almost identical ac-

it tstos | p 4 fore the last obarl 's. Each list contains the ids of faulted
cess patiernrepeats oop goes (see figure 4). pages in the order of fault. But, pages faulted within criti-
cal section protected by lock are not included in these lists.

int; Similarity of two lists is calculated like this: ||(denotes

for (i = 0; i < iterations; i++)

{ number of elements in a list):
barrier(1);
compute_a(); similarity = |last N before_last|
baffler(Z)ybO |last| + |beforelast| — |last N beforelast|
compute_b();
barrier(3); If similarity is more than 50%, we can say that they are

compute_c(); similar to each other. We save the ids of common pages

(last N before _last ) included in bothlast and
before _last to expected , which will be used for

Figure 2. A parallel program example prefetching.

barrier(1)
i=0|compute_a()| ....... accesses remote page 1, 2, 5,7 4.1.3 Stride Mode PrefetChing
barrier(2) As history mode does, stride mode prefetching analyzes ac-
compute_b()| ... accesses remote page 8, 9, 11, 14 cess history per barrier variable. At the beginning of barrier,
barrier(3) we sortlast and store itintdemp list. We calculate a fre-
compute_c() | - ------ accesses remote page 15, 16,18, 21 4,ancy of the stride which occurs most frequentlygmp .
barrier(1) If the frequency is more than 50%, this mode predicts that
i=1|compute_a(f .. accesses remote page 1, 2, 5, 7 future accesses are going to be separated by the same stride.
barrier(2)
compute_b()| ....... accesses remote page 8, 9, 11, 14 4.1.4 Choosing a Prefetching Mode
barrier(3)
compute_c() [ - accesses remote page 15, 16, 18,21 Choosing a prefetching mode is decided like this: at the be-

ginning of a barrier, similarity and frequency are indepen-
dently calculated as explained above. Comparing similarity
and frequency, we choose the one which has a larger value.
Figure 3. Run-time execution pattern In a case of tie, we choose the history mode. But, we issue
prefetches only when the chosen value is larger than 50%.

i=0 compute_a() | accesses remote page 1, 2, 5, 7

4.2 Implementation Details
i=1 compute_a() | accesses remote page 1, 2,5, 7

i=2 | compute_a()| accesses remote page 1, 2, 5, 7 4.2.1 Maintaining Access History per Barrier Variable

To record page access history per barrier variable, we main-

tain one more listcurrent , which contains the ids of

pages accessed in current barrier phase (let’s call the current
Figure 4. Access pattern of a program part barrier variablebarl ) in the order of fault. Cases when a
which is protected by barrier variable 1 page fault occurs during execution of an application are one
of the followings: 1. write to a RO local (home) page, 2.
read/write to an INV remote page, or 3. write to a RO re-
mote page. Since access pattern of an application has no
History mode prefetching works as follows: if access pat- relation to home allocation, we must consider not only re-
terns of last two barrier phases which are protected by themote pages but also local pages in calculating a stride. So,
same barrier variable are similar to each other, this modewe append the page id tmrrent  for both case 1 and 2.

4.1.2 History Mode Prefetching



When current phase of barribarl ends, all lists related Adaptive++ even fails to predict regular alternating pat-
tobarl are restructured appropriately. tern like figure 5 (actually, this pattern is from BARNES).
The number denotes a page id and the character in paren-
thesis denotes whether it is a local fault (H) or remote (R).
Adaptive++ fails to predict access pattern of barrier(13) be-
When the history mode is chosen, prefetches are issuedtause it chooses repeated-stride mode not repeated-phase
through two steps. (1) At the beginning of a barrier, we mode at the beginning of barrier(13). This in turn stems
issue prefetches for the first 25 pageskpected and from the fact that usefulness is 0 (since every fault in pre-
delete them from the list. While other techniques usually vious phase is local, there is no useful prefetches) and fre-
don't wait for replies after issuing prefetches, our imple- quency of stride value 8 is more than 50%.

mentation does. Because prefetch replies consecutively ar-

rive right after the last prefetch is issued, there is almost nog Experimental Results

overlapping between computation and communication. (2)
Whenever a remote page fault occurs (except for occurring
inside critical sections), we issue prefetches for the first 5

pages irexpected , delete them from the list, and wait for our technique on KDSM. A little attention must be paid for

replies. . . . _the following details: (1) while B+ and Adaptive++ are pro-
When the .strlde mode is chosen, prefetches are only IS'posed issuing prefetches for diffs under the LRC protocol,

sued at the time of page fault. When a remote page fau"our technique issues prefetches for a whole page under the

occurs (except for occurring inside critical sections), we ex- HLRC protocol. To perform experiments under the same
amine 5 pages following the page separated bY the Strldecondition, all techniques were implemented as prefetching a
value. We issue prefetches only for pages which have

lid shared 4d q . INV h.awhole page. (2) B+ and Adaptive++ don'’t wait for prefetch
valld shared memory address and are in an state (t ISrepIies. But there is almost no overlapping between compu-

means that it has ever been mapped). tation and communication, as explained in section 4.2. So,

Cache state of prefetched pages is not set to RO but Qye implemented such that all techniques wait for replies.
INV for the purpose of checking that pages are really ac-

cessed. If a fault on prefetched page occurs later, we chang
the state from INV to RO/RW according to the fault class.

4.2.2 When and How To Issue Prefetches

To evaluate performance of prefetching techniques on
the same platform, we implemented B+, Adaptive++, and

8.1 Prefetching Effectiveness

To evaluate effectiveness of prefetching techniques, we
examine prefetching coverage and hit raimveragas de-
fined as the percentage of page faults which are eliminated

Adaptive++ [4] technique is very similar to our tech- by prefetching pages in advandsit ratio is defined as the
nique in many respects. But, Adaptive++ assumes that mospercentage of valid prefetches among total prefetches. A
applications exhibit consecutive or alternating pattern and itvalid prefetch is a prefetch by which a page fault is suc-
pays no attention to barrier variable in analyzing access his-cessfully eliminated. Table 1 shows coverage and hit ratio
tory. Therefore, Adaptive++ fails to predict future accesses of three prefetching techniques (B+ denotes B+ technique,
for an application that uses more than two barrier variablesa++ denotes Adaptive++ technique, and New denotes our
within a loop (for example, figure 2), though the application technique). For both Adaptive++ and our technique, cover-

4.3 Comparison with the Adaptive++ Technique

exhibits very regular pattern. age and hit ratio of individual mode are also shown. Cover-
age and hit ratio are calculated as follow:
i=0 [ o(H), 2(R), 3R), 4(R), 5(R), 6(R), ... | Pamierd3) Coverage . Y elid Prefetches

barrier(15) Total Access Misses

16(H), 24(H), 32(H), 40(H), 48(H), ... Valid Profetches

i=1 0(H), 2(R), 3(R), 4(R), 5(R), 6(R), ... barrier(13) Hit Ratio = Tatal Prefetches

16(H), 24(H), 32(H), 40(H), 48(H), ... | P2mer(15) ,
- barrier(13) B+ has best coverage among three techniques for
i=2[  O(H), 2(R), 3(R), 4(R), 5(R), 6(R), ... _ BARNES, FFT, and RADIX. B+ has good hit ratio for

16(H), 24(H), 32(H), 40(H), 48(H), ... | P2mier(15) BARNES and FFT, but bad for OCEAN and RADIX. Low

hit ratio of RADIX is due to its irregular access pattern.
Adaptive++ has lowest coverage among three tech-

Figure 5. Another case that Adaptive++ fails nigues. From table 1, we can see that most prefetches were
to predict regular alternating pattern issued by repeated-stride mode. This implies that repeated-

phase mode fails to predict future access pattern. Though



Pref. | Total Overall History/Repeated-Phase Mode Stride/Repeated-Stride Mode
Appl. | Tech.| Access| Total | Valid | Covg. Hit Total | Valid | Covg. Hit Total | Valid | Covg. Hit

Misses | Pref. Pref. Ratio Pref. Pref. Ratio Pref. | Pref. Ratio
B+ 20084 | 19497 | 18111 | 90.18 | 92.89
BARNES| A++ | 20084 | 1414 1390 6.92 | 98.30 0 0 0.00 0.00 1414 | 1390 | 6.92 98.30

New | 20084 | 14558 | 14539 | 72.39 | 99.87 | 13309 | 13290 | 66.17 | 99.86 | 1249 | 1249 | 6.22 | 100.00
B+ 19433 | 15960 | 15163 | 78.03 | 95.01
FFT A++ | 19433 | 10335 | 10164 | 52.30 | 98.35| 1711 | 1711 | 8.80 | 100.00 | 8624 | 8453 | 43.50 | 98.02
New | 19433 | 12266 | 12260 | 63.09 | 99.95| 12168 | 12168 | 62.62 | 100.00 | 98 92 0.47 93.88
B+ 29501 | 23827 | 11728 | 39.75 | 49.22
OCEAN | A++ | 29501 | 8806 | 8216 | 27.85 | 93.30| 579 560 1.90 96.72 | 8227 | 7656 | 25.95 | 93.06
New | 29501 | 21881 | 19510 | 66.13 | 89.16 | 14587 | 12993 | 44.04 | 89.07 | 7294 | 6517 | 22.09 | 89.35
B+ 20156 | 18094 | 1317 6.53 7.28
RADIX | A++ | 20156 21 20 0.10 | 95.24 0 0 0.00 0.00 21 20 0.10 95.24
New | 20156 24 23 0.11 | 95.83 0 0 0.00 0.00 24 23 0.11 95.83

Table 1. Prefetch Coverage and Hit Ratio

Appl. Number of Messages Message Size (KBytes)
Base B+ A++ New Base B+ A++ New
BARNES | 43005 | 45777 | 43053 | 43043 | 92647 | 98332 | 92745 | 92725
FFT 78290 | 79884 | 78632 | 78302 | 236299 | 239568 | 237001 | 236324
OCEAN | 88488 | 110136 | 89146 | 93116 | 243096 | 287566 | 244436 | 252625
RADIX 46702 | 80261 | 46705 | 46699 | 112257 | 181073 | 112257 | 112241

Table 2. Network Traffic

BARNES has a very regular access pattern, its coverage is

g : Prefeting Applications
very_low because it fails to predict future access pattern (see Technique | BARNES | FFT | OCEAN | RADIX
section 4.3). Low coverage of RADIX comes _from a differ- Bt 860 | 7151 335 33
ent reason that RADIX is very irregular. It will be helpful A++ 3.0 222| 151 0.0
not to issue prefetches for such an irregular application. Hit New 411 [ 341| 454 0.0

ratio of Adaptive++ is more than 90% for all applications.

Coverage of our technique is best for OCEAN and sec-
ond for BARNES and FFT. Our technique issues small
number of prefetches for RADIX for the same reason as
Adaptive++. For BARNES and FFT, more than 90% of to-
tal prefetches were issued by history mode and hit ratio of5.3 Qverall Performance
history mode is nearly 100%. If we analyze past access
E!SFory per barrier variables, regular applications would ex: Figure 6 shows execution time breakdown of applica-

ibit similar access pattern at phases under the same bametﬁons normalized to base KDSM. Prefetching overhead is
variable and, therefore, there is much possibility for the his- i ¢ ing f fot h intaini X
tory mode to be chosen. This explains why our technique ime spent preparing for prefetching (e.g. maintaining ac

chooses history mode more frequently than stride mode and™©s° history and .dE.EC'dmg prefetching mode). From figure 6,
why the hit ratio of history mode is so high. we can see that it is very small for all techniques. Overall,

prefetching reduces time spent handling page faults except
for RADIX. Table 3 shows reduction in remote memory la-
5.2 Network Traffic tencies.
While B+ has best performance improvement for
BARNES (18%) and FFT (11%) it has worst performance
Table 2 shows the total number of messages and messagédegradation for OCEAN (-17%) and RADIX (-13%). From
size sent through network for the base KDSM and for casesthis, we can think that effectiveness of B+ is largely depen-
prefetching used. Overall, prefetching techniques increasedent on whether invalidations can guide future access be-
message count and size for all applications. In particular, havior or not. If invalidations succeed to predict future data
B+ greatly increases message count and size for OCEANaccesses, B+ can improve application performance greatly.
and RADIX as a result of many useless prefetches. If invalidations fail to do, B+ causes severe performance

Table 3. Percentage of Reduction in Remote
Memory Latencies
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degradation as a result of issuing many useless prefetches.[2]
The reason why synchronization time increases for all ap-
plications is that B+ issues all the prefetches at synchroniza-
tion points and waits for replies.

While Adaptive++ has performance improvement for (3]
OCEAN (3%) and FFT (5%), it has a little performance
degradation for BARNES and RADIX (-1% for both). As
we saw previously, the coverage of BARNES and RADIX is [4]
so low that we can’t expect any performance improvement
by prefetching.

Our technique has performance improvement for [5]
BARNES, OCEAN, and FFT as much as 16%, 13%, and
8% respectively, and no performance improvement for
RADIX. High coverage and hit ratio of BARNES, OCEAN,
and FFT well explain this improvements. [6]

) (7]
6 Conclusions

In this paper, we proposed a prefetching technique which (8]
predicts future access behavior by analyzing access history
of individual barrier variable. Experimental results showed [
that considering synchronization variable makes prediction
more accurate. Our technique could achieve significant re-
duction in memory access latencies. We believe that our
technique is effective in reducing long memory latencies of [10]
SVM systems.
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