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Abstract

Though shared virtual memory (SVM) systems promise
low cost solutions for high performance computing, they
suffer from long memory latencies. These latencies are usu-
ally caused by repetitive invalidations on shared data. Since
shared data are accessed through synchronizations and the
patterns by which threads synchronizes are repetitive, a
prefetching scheme based on such repetitiveness would re-
duce memory latencies. Based on this observation, we pro-
pose a prefetching technique which predicts future access
behavior by analyzing access history per synchronization
variable. Our technique was evaluated on an 8-node SVM
system using the SPLASH-2 benchmark. The results show
that our technique could achieve 34% – 45% reduction in
memory access latencies.

1 Introduction

Research on cluster systems such as NOW (Network
of Workstations) has been fueled by the availability of
powerful microprocessors and high-speed networks. SVM
(Shared Virtual Memory) systems provide shared memory
abstraction between machines using virtual memory hard-
ware [8, 2]. But, long remote memory access latencies have
been a major obstacle to performance improvement of SVM
systems.

To reduce memory latencies, most SVM systems use the
following approaches: (1) to convert remote accesses into
local ones by caching, (2) to delay communications using
relaxed memory model such as LRC (Lazy Release Consis-
tency) [7], and (3) to reduce effects of false sharing using
multiple-writer protocol. But, remaining latencies are still
significant.

0This research is supported by KISTEP under the National Research
Laboratory program.

Since shared data are accessed through synchronizations
and the patterns by which threads synchronizes are repet-
itive, a prefetching scheme based on such repetitiveness
would reduce memory latencies. Prefetching can be used
to reduce these latencies by fetching data in advance before
actual data accesses.

Based on this observation, we propose a prefetching
technique in which the data invalidated after a repetitive
synchronization pattern are prefetched at proper times. Our
prefetching technique analyzes past data access history per
synchronization variable, then adaptively chooses between
history mode and stride mode prefetching. If it is found
that there is no particular access pattern, we don’t issue
prefetches.

To evaluate our technique, we ran four applications
from SPLASH-2 using KDSM (KAIST Distributed Shared
Memory) on 8-PC Linux cluster. The results show that
our technique could achieve 34% – 45% reduction in mem-
ory access latencies for three applications. By comparing
with other techniques, we illustrate that considering syn-
chronization variables makes prediction more accurate.

The rest of this paper is organized as follows. In sec-
tion 2, experimental methodology and preliminary results
are given. In section 3, we discuss related work. In section
4, we describe our prefetching technique which can effec-
tively reduce memory access latencies. In section 5, we
report experimental results. Finally, conclusions are given
in section 6.

2 Experimental Methodology and Prelimi-
nary Results

To examine impact of remote memory access latencies
on SVM performance, we performed experiments on 8-PC
Linux cluster which are connected by 100 Mbps Switched
Fast Ethernet. Each PC contains 500 MHz Pentium III CPU
and 256 MB main memory.
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Figure 1. Execution time breakdown on top of
KDSM on 8 processors

2.1 KDSM: KAIST Distributed Shared Memory

KDSM is a full-blown SVM system which has been im-
plemented from scratch. KDSM is implemented as a user-
level library running on Linux 2.2.13. Communication layer
is TCP/IP and SIGIO signal handling is used for process-
ing messages from other processes. KDSM uses page-
based invalidation protocol, multiple-writer protocol, and
supports HLRC (Home-based Lazy Release Consistency)
[11]. Cache pages can be one of four states: RO (read-only),
RW (read-write), INV (invalid), and UNMAP (unmapped).
All experiments were performed using round-robin home
allocation. Average basic operation costs of KDSM are as
follow: 1047�s for fetching a 4KB page, 259�s for acquir-
ing a lock, and 1132�s for barrier (8 processors).

2.2 Applications

We ran four applications from SPLASH-2 [10].
BARNES implements the BARNES-Hut method to simu-
late the interaction of a system of 4K bodies. FFT performs
a 3-D complex Fast Fourier Transform on 256K data points.
OCEAN simulates large-scale ocean movements based on
eddy and boundary currents. We simulate a 258� 258
ocean grid. RADIX performs an integer radix sort with
220 keys. BARNES and FFT are restructured versions from
CVM [6] distribution and exhibit highly regular page ac-
cess pattern. OCEAN and RADIX are directly ported to
KDSM from SPLASH-2 and not restructured. RADIX ex-
hibits highly irregular pattern and OCEAN exhibits mixed
pattern.

2.3 Preliminary Results

Figure 1 shows an execution time breakdown of appli-
cations on top of KDSM on 8 processors. Execution time

consists of the following components: (1) time spent doing
useful computation (2) synchronization (lock and barrier)
(3) time spent handling page faults (this includes both local
and remote faults, but almost all the time is spent handling
remote ones). From figure 1, we can see that most applica-
tions spend much time (about 26% – 62%) handling page
faults. Prefetching can be used to reduce these remote ac-
cess overheads.

3 Related Work

Bianchini et al. [3] proposed the B+ technique which
issues prefetches for all the invalidated pages at synchro-
nization points.

Amza et al. [1] proposed a technique which dynamically
aggregates pages into larger page group. On a page fault,
all pages in a page group are fetched at the same time. This
has a similar effect as prefetching.

Karlsson et al. [5] proposed a history prefetching tech-
nique that exploits producer-consumer access pattern. If no
access pattern is detected, a sequential prefetching is used.
This technique is a limited one in that it can detect only
producer-consumer pattern. It is possible for this technique
to issue useless prefetches for irregular applications because
it always tries to issue prefetches.

Bianchini et al. [4] proposed the Adaptive++ tech-
nique which adaptively chooses repeated-phase mode and
repeated-stride mode. Adaptive++ has a benefit over Karls-
son’s in that (1) it is not limited to producer-consumer pat-
tern and (2) it does not issue prefetches when there is no
particular pattern.

Mowry et al. [9] studied prefetching effectiveness when
prefetching codes are inserted into program source by com-
piler and programmer. Since this technique analyzes source
code, it can predict future access behavior with high ac-
curacy even in a case of irregular application. This study
presents the maximum performance improvements which
can be achieved by prefetching.

4 Adaptive Prefetching Technique

4.1 Prefetching Heuristics

Our prefetching technique analyzes past data access
history per synchronization variable, and then adaptively
chooses between history mode and stride mode prefetch-
ing. If it is found that there is no particular access pattern,
we don’t issue prefetches. Although this technique can be
applied to both barrier and lock variables, we only deal with
barrier variables in this paper. Before we continue to ex-
plain our prefetching technique, we show a simple example
which illustrates why we should consider synchronization
variables.



4.1.1 A Simple Parallel Program Example

Figure 2 shows a simple parallel program of an iterative al-
gorithm. This program consists of three parts which are
protected by three barrier variables. Figure 3 shows run-
time execution behavior of this program. If we examine
page access history of each part which is protected by the
same barrier variable, it is evident that almost identical ac-
cess pattern repeats asfor loop goes (see figure 4).

int i;
for (i = 0; i < iterations; i++)
{
   barrier(1);
   compute_a();
   barrier(2);
   compute_b();
   barrier(3);
   compute_c();
}

Figure 2. A parallel program example

compute_a() .......  accesses remote page 1, 2, 5, 7i = 0

compute_b()

compute_c()

.......  accesses remote page 8, 9, 11, 14

.......  accesses remote page 15, 16, 18, 21

i = 1

...

barrier(1)

barrier(2)

barrier(3)

...
...

compute_a() .......  accesses remote page 1, 2, 5, 7

compute_b()

compute_c()

.......  accesses remote page 8, 9, 11, 14

.......  accesses remote page 15, 16, 18, 21

barrier(1)

barrier(2)

barrier(3)

Figure 3. Run-time execution pattern

compute_a()i = 0

i = 1

i = 2

accesses remote page 1, 2, 5, 7

accesses remote page 1, 2, 5, 7

accesses remote page 1, 2, 5, 7

.

..
.
..

.

..

compute_a()

compute_a()

Figure 4. Access pattern of a program part
which is protected by barrier variable 1

4.1.2 History Mode Prefetching

History mode prefetching works as follows: if access pat-
terns of last two barrier phases which are protected by the
same barrier variable are similar to each other, this mode

predicts that future accesses are going to be similar to these
patterns.

To record access history per barrier variable, we maintain
three lists for each barrier variable:last , before last ,
andexpected . In a case of barrier variablebar1 , last
contains access history at the last barrier phase ofbar1 ’s
andbefore last contains access history at the phase be-
fore the last ofbar1 ’s. Each list contains the ids of faulted
pages in the order of fault. But, pages faulted within criti-
cal section protected by lock are not included in these lists.
Similarity of two lists is calculated like this: (jj denotes
number of elements in a list):

similarity =
jlast \ before lastj

jlastj+ jbefore lastj � jlast \ before lastj

If similarity is more than 50%, we can say that they are
similar to each other. We save the ids of common pages
(last \ before last ) included in both last and
before last to expected , which will be used for
prefetching.

4.1.3 Stride Mode Prefetching

As history mode does, stride mode prefetching analyzes ac-
cess history per barrier variable. At the beginning of barrier,
we sortlast and store it intotemp list. We calculate a fre-
quency of the stride which occurs most frequently intemp .
If the frequency is more than 50%, this mode predicts that
future accesses are going to be separated by the same stride.

4.1.4 Choosing a Prefetching Mode

Choosing a prefetching mode is decided like this: at the be-
ginning of a barrier, similarity and frequency are indepen-
dently calculated as explained above. Comparing similarity
and frequency, we choose the one which has a larger value.
In a case of tie, we choose the history mode. But, we issue
prefetches only when the chosen value is larger than 50%.

4.2 Implementation Details

4.2.1 Maintaining Access History per Barrier Variable

To record page access history per barrier variable, we main-
tain one more listcurrent , which contains the ids of
pages accessed in current barrier phase (let’s call the current
barrier variablebar1 ) in the order of fault. Cases when a
page fault occurs during execution of an application are one
of the followings: 1. write to a RO local (home) page, 2.
read/write to an INV remote page, or 3. write to a RO re-
mote page. Since access pattern of an application has no
relation to home allocation, we must consider not only re-
mote pages but also local pages in calculating a stride. So,
we append the page id tocurrent for both case 1 and 2.



When current phase of barrierbar1 ends, all lists related
to bar1 are restructured appropriately.

4.2.2 When and How To Issue Prefetches

When the history mode is chosen, prefetches are issued
through two steps. (1) At the beginning of a barrier, we
issue prefetches for the first 25 pages inexpected and
delete them from the list. While other techniques usually
don’t wait for replies after issuing prefetches, our imple-
mentation does. Because prefetch replies consecutively ar-
rive right after the last prefetch is issued, there is almost no
overlapping between computation and communication. (2)
Whenever a remote page fault occurs (except for occurring
inside critical sections), we issue prefetches for the first 5
pages inexpected , delete them from the list, and wait for
replies.

When the stride mode is chosen, prefetches are only is-
sued at the time of page fault. When a remote page fault
occurs (except for occurring inside critical sections), we ex-
amine 5 pages following the page separated by the stride
value. We issue prefetches only for pages which have a
valid shared memory address and are in an INV state (this
means that it has ever been mapped).

Cache state of prefetched pages is not set to RO but to
INV for the purpose of checking that pages are really ac-
cessed. If a fault on prefetched page occurs later, we change
the state from INV to RO/RW according to the fault class.

4.3 Comparison with the Adaptive++ Technique

Adaptive++ [4] technique is very similar to our tech-
nique in many respects. But, Adaptive++ assumes that most
applications exhibit consecutive or alternating pattern and it
pays no attention to barrier variable in analyzing access his-
tory. Therefore, Adaptive++ fails to predict future accesses
for an application that uses more than two barrier variables
within a loop (for example, figure 2), though the application
exhibits very regular pattern.

16(H), 24(H), 32(H), 40(H), 48(H), ...

i = 0 barrier(13)0(H), 2(R), 3(R), 4(R), 5(R), 6(R), ...

barrier(15)

16(H), 24(H), 32(H), 40(H), 48(H), ...

i = 1 barrier(13)0(H), 2(R), 3(R), 4(R), 5(R), 6(R), ...

barrier(15)

16(H), 24(H), 32(H), 40(H), 48(H), ...

barrier(13)0(H), 2(R), 3(R), 4(R), 5(R), 6(R), ...

barrier(15)
i = 2

...
...

...

Figure 5. Another case that Adaptive++ fails
to predict regular alternating pattern

Adaptive++ even fails to predict regular alternating pat-
tern like figure 5 (actually, this pattern is from BARNES).
The number denotes a page id and the character in paren-
thesis denotes whether it is a local fault (H) or remote (R).
Adaptive++ fails to predict access pattern of barrier(13) be-
cause it chooses repeated-stride mode not repeated-phase
mode at the beginning of barrier(13). This in turn stems
from the fact that usefulness is 0 (since every fault in pre-
vious phase is local, there is no useful prefetches) and fre-
quency of stride value 8 is more than 50%.

5 Experimental Results

To evaluate performance of prefetching techniques on
the same platform, we implemented B+, Adaptive++, and
our technique on KDSM. A little attention must be paid for
the following details: (1) while B+ and Adaptive++ are pro-
posed issuing prefetches for diffs under the LRC protocol,
our technique issues prefetches for a whole page under the
HLRC protocol. To perform experiments under the same
condition, all techniques were implemented as prefetching a
whole page. (2) B+ and Adaptive++ don’t wait for prefetch
replies. But there is almost no overlapping between compu-
tation and communication, as explained in section 4.2. So,
we implemented such that all techniques wait for replies.

5.1 Prefetching Effectiveness

To evaluate effectiveness of prefetching techniques, we
examine prefetching coverage and hit ratio.Coverageis de-
fined as the percentage of page faults which are eliminated
by prefetching pages in advance.Hit ratio is defined as the
percentage of valid prefetches among total prefetches. A
valid prefetch is a prefetch by which a page fault is suc-
cessfully eliminated. Table 1 shows coverage and hit ratio
of three prefetching techniques (B+ denotes B+ technique,
A++ denotes Adaptive++ technique, and New denotes our
technique). For both Adaptive++ and our technique, cover-
age and hit ratio of individual mode are also shown. Cover-
age and hit ratio are calculated as follow:

Coverage =
V alid Prefetches

Total AccessMisses

Hit Ratio =
V alid Prefetches

Tatal Prefetches

B+ has best coverage among three techniques for
BARNES, FFT, and RADIX. B+ has good hit ratio for
BARNES and FFT, but bad for OCEAN and RADIX. Low
hit ratio of RADIX is due to its irregular access pattern.

Adaptive++ has lowest coverage among three tech-
niques. From table 1, we can see that most prefetches were
issued by repeated-stride mode. This implies that repeated-
phase mode fails to predict future access pattern. Though



Pref. Total Overall History/Repeated-Phase Mode Stride/Repeated-Stride Mode
Appl. Tech. Access Total Valid Covg. Hit Total Valid Covg. Hit Total Valid Covg. Hit

Misses Pref. Pref. Ratio Pref. Pref. Ratio Pref. Pref. Ratio
B+ 20084 19497 18111 90.18 92.89

BARNES A++ 20084 1414 1390 6.92 98.30 0 0 0.00 0.00 1414 1390 6.92 98.30
New 20084 14558 14539 72.39 99.87 13309 13290 66.17 99.86 1249 1249 6.22 100.00
B+ 19433 15960 15163 78.03 95.01

FFT A++ 19433 10335 10164 52.30 98.35 1711 1711 8.80 100.00 8624 8453 43.50 98.02
New 19433 12266 12260 63.09 99.95 12168 12168 62.62 100.00 98 92 0.47 93.88
B+ 29501 23827 11728 39.75 49.22

OCEAN A++ 29501 8806 8216 27.85 93.30 579 560 1.90 96.72 8227 7656 25.95 93.06
New 29501 21881 19510 66.13 89.16 14587 12993 44.04 89.07 7294 6517 22.09 89.35
B+ 20156 18094 1317 6.53 7.28

RADIX A++ 20156 21 20 0.10 95.24 0 0 0.00 0.00 21 20 0.10 95.24
New 20156 24 23 0.11 95.83 0 0 0.00 0.00 24 23 0.11 95.83

Table 1. Prefetch Coverage and Hit Ratio

Appl. Number of Messages Message Size (KBytes)
Base B+ A++ New Base B+ A++ New

BARNES 43005 45777 43053 43043 92647 98332 92745 92725
FFT 78290 79884 78632 78302 236299 239568 237001 236324

OCEAN 88488 110136 89146 93116 243096 287566 244436 252625
RADIX 46702 80261 46705 46699 112257 181073 112257 112241

Table 2. Network Traffic

BARNES has a very regular access pattern, its coverage is
very low because it fails to predict future access pattern (see
section 4.3). Low coverage of RADIX comes from a differ-
ent reason that RADIX is very irregular. It will be helpful
not to issue prefetches for such an irregular application. Hit
ratio of Adaptive++ is more than 90% for all applications.

Coverage of our technique is best for OCEAN and sec-
ond for BARNES and FFT. Our technique issues small
number of prefetches for RADIX for the same reason as
Adaptive++. For BARNES and FFT, more than 90% of to-
tal prefetches were issued by history mode and hit ratio of
history mode is nearly 100%. If we analyze past access
history per barrier variables, regular applications would ex-
hibit similar access pattern at phases under the same barrier
variable and, therefore, there is much possibility for the his-
tory mode to be chosen. This explains why our technique
chooses history mode more frequently than stride mode and
why the hit ratio of history mode is so high.

5.2 Network Traffic

Table 2 shows the total number of messages and message
size sent through network for the base KDSM and for cases
prefetching used. Overall, prefetching techniques increase
message count and size for all applications. In particular,
B+ greatly increases message count and size for OCEAN
and RADIX as a result of many useless prefetches.

Prefeting Applications
Technique BARNES FFT OCEAN RADIX

B+ 86.0 71.5 33.5 3.3
A++ 3.0 22.2 15.1 0.0
New 41.1 34.1 45.4 0.0

Table 3. Percentage of Reduction in Remote
Memory Latencies

5.3 Overall Performance

Figure 6 shows execution time breakdown of applica-
tions normalized to base KDSM. Prefetching overhead is
time spent preparing for prefetching (e.g. maintaining ac-
cess history and deciding prefetching mode). From figure 6,
we can see that it is very small for all techniques. Overall,
prefetching reduces time spent handling page faults except
for RADIX. Table 3 shows reduction in remote memory la-
tencies.

While B+ has best performance improvement for
BARNES (18%) and FFT (11%) it has worst performance
degradation for OCEAN (-17%) and RADIX (-13%). From
this, we can think that effectiveness of B+ is largely depen-
dent on whether invalidations can guide future access be-
havior or not. If invalidations succeed to predict future data
accesses, B+ can improve application performance greatly.
If invalidations fail to do, B+ causes severe performance
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Figure 6. Normalized Execution Time on 8 Processors

degradation as a result of issuing many useless prefetches.
The reason why synchronization time increases for all ap-
plications is that B+ issues all the prefetches at synchroniza-
tion points and waits for replies.

While Adaptive++ has performance improvement for
OCEAN (3%) and FFT (5%), it has a little performance
degradation for BARNES and RADIX (-1% for both). As
we saw previously, the coverage of BARNES and RADIX is
so low that we can’t expect any performance improvement
by prefetching.

Our technique has performance improvement for
BARNES, OCEAN, and FFT as much as 16%, 13%, and
8% respectively, and no performance improvement for
RADIX. High coverage and hit ratio of BARNES, OCEAN,
and FFT well explain this improvements.

6 Conclusions

In this paper, we proposed a prefetching technique which
predicts future access behavior by analyzing access history
of individual barrier variable. Experimental results showed
that considering synchronization variable makes prediction
more accurate. Our technique could achieve significant re-
duction in memory access latencies. We believe that our
technique is effective in reducing long memory latencies of
SVM systems.
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