
Profiling gem5 Simulator
Johnson Umeike, Neel Patel, Alex Manley, Amin Mamandipoor, Heechul Yun, Mohammad Alian

Electrical Engineering and Computer Science Department
University of Kansas

Abstract—In this work, we set out to find the answers to the
following questions: (1) Where are the bottlenecks in a state-of-the-
art architectural simulator? (2) How much faster can architectural
simulations run by tuning system configurations? (3) What
are the opportunities in accelerating software simulation using
hardware accelerators? We choose gem5 as the representative
architectural simulator, run several simulations with various
configurations, perform a detailed architectural analysis of the
gem5 source code on different server platforms, tune both system
and architectural settings for running simulations, and discuss
the future opportunities in accelerating gem5 as an important
application. Our detailed profiling of gem5 reveals that its
performance is extremely sensitive to the size of the L1 cache. Our
experimental results show that a RISC-V core with 32KB data and
instruction cache improves gem5’s simulation speed by 31%∼61%
compared with a baseline core with 8KB L1 caches. Our paper is
the first step toward building specialized hardware and software
environments for accelerating software-based simulators.

I. INTRODUCTION

We are in the golden age of computer architecture [1]
where the continuation of Moore’s law is premised upon the
specialization of hardware for different application domains.
This simply means that computer architects are going to design
many more hardware in the years to come.

Software-based simulation is the backbone of computer
architecture research and development. Since the inception
of computer architecture as a field, many software-based archi-
tectural simulators1 and simulation techniques have emerged
[2]. Currently, various architectural simulators are in use by
academia and industry for modeling different aspects of future
computing platforms. gem5 [3], Sniper [4], MARSSx86 [5],
and ZSim [6] are just a few examples of architectural simulators
currently with active communities. Designing hardware requires
many hours of simulation and this figure will only increase in
the future due to the proliferation of open-source hardware [7]
and the need for domain-specific hardware design.

Improving simulation performance has been in the spotlight
from the early implementations of software-based simulators.
Throughout the years, many techniques such as parallelizing
simulation on multiple cores [6] or multiple nodes [8], [9],
using hardware virtualization support [10], [11], sampling
techniques [12], [13], [14], trading off simulation accuracy
for speed [15], [16], and using configurable hardware for
modeling flexible systems [17], [18], [19] have been proposed
and implemented to improve simulation performance. Previous
works often overlook simple software and system optimizations
that can significantly improve the simulation speed without

1Unless mentioned otherwise, throughout the paper, we refer to “software-
based architectural simulators” as “simulators”

introducing complex changes to the simulator. In this work,
we set to fill this gap.

gem5 is one of the most widely used architectural simulators,
providing a platform for modeling future computer systems [20].
gem5 also supports various modes of execution as well as
different levels of simulation detail. Due to the ubiquity
of gem5 and its large user base, we select gem5 as the
representative simulator for this work. We simulate different
workloads on gem5 with diverse configurations, profile gem5
code, and perform a detailed architectural analysis of the gem5
execution to find the bottlenecks in the official gem5 release.
We compare the simulation time, (measured as host seconds)
when running gem5 on two different platforms: Intel Xeon and
Apple M1 Chips. We perform a detailed comparison of the
architectural statistics between the platforms. We also run gem5
on FireSim [17], which is an FPGA-accelerated architectural
simulator, to investigate the sensitivity of gem5’s speed to some
architectural parameters. Finally, we use our profiling insights
to perform simple system tuning and propose architectural
recommendations to improve gem5 simulation speed.

This work is the first step towards better understanding
the characteristics of a state-of-the-art architectural simulator
and developing hardware and software solutions to meet
the growing demand for architectural simulation. Our major
contributions in this paper hinge upon answering the following
questions:

• Where are the bottlenecks in running gem5 on a Xeon
server? Our results show that gem5 is extremely front-
end (instruction) bound with large iCache and TLB miss
rates. Due to the huge code size, an abundance of virtual
functions, and runtime polymorphism in the source code,
there is no particular hot function or code block in gem5.
As a result, the decoder unit in an out-of-order processor
is under extreme pressure to supply µOps to the back-end,
and there is large misprediction and resteer overhead in
the pipeline’s front-end.

• How does the performance of gem5 vary in different
server platforms when running simulations? When
running architectural simulations, the focus is usually
on the configuration of the simulated system but the
configuration of the host is often ignored. Our results show
that the underlying physical hardware notably impacts
simulation time. For instance, a MacBook Pro with an M1
chip completes the same simulation 1.7×∼3.02× faster
than a server equipped with Xeon Gold 6242R CPUs and
96GB of DDR4 DRAM.

• How much faster can gem5 run by tuning the
architectural, system, and runtime configurations on
the host? Motivated by the observations from running

1

gem5 on different server platforms, we study the sensitivity
of gem5 speed to L1/L2 cache size, CPU frequency,
back gem5 code with huge pages, and recompile gem5
for optimization. Our results show that larger L1 data
and instruction caches can significantly speed up gem5
simulations.

• Long term solution? Lastly, we discuss some of the
solutions moving forward, such as designing specialized
accelerators for simulation.

The rest of this work is organized as follows. In Sec.II, we
discuss the motivation for this work and provide background
information on computer architecture simulators. In Sec.III, we
describe our methodology for profiling gem5 and collecting
experimental results. In Sec.IV, we analyze gem5 source
code and microarchitectural statistics and reveal the runtime
execution characteristics of gem5 running on different platforms.
In Sec.V we discuss the sensitivity of gem5 speed to varying
system and architectural configurations of the simulation server.
Sec.VI summarizes some of our takeaways and discusses future
directions for accelerating simulation speed. Sec.VIII concludes
this work.

II. MOTIVATION AND BACKGROUND

Simulation is extensively used in both academia and industry.
Although the bar for the accuracy of simulation in academic
research is lower, potentially impactful academic research
requires full-system modeling of various hardware and software
components [21]. Ideally, we would have a simulator that is
as fast as the real hardware, as flexible as a software imple-
mentation, and performant as the target hardware. However,
the speed of simulation, and complexity of implementation are
influenced by the required simulation detail [2].

We can classify architectural simulation into two cate-
gories: functional and timing. Functional simulation (i.e.,
emulation) models the functionality of future hardware. This
is mainly used for validating hardware functionalities and
software development and testing before the hardware is built.
Some examples are HASE[22], simCore [23], Barra [24],
Simics [25], AtomicSimple CPU configuration in gem5 [3].
Timing simulation (i.e., performance simulation) is used to
model the timing aspects of hardware while providing the
correct functionality. There are timing simulators with different
performance-modeling fidelity. Clearly, the complexity of a
simulator proportionally increases with its modeling fidelity.
Some examples are zSim [6], sniper [4], HAsim [18], gem5
[3], Simple Scalar [26]. Additionally, simulators can operate
in user-level or full-system mode. In the user-level mode, the
simulator only executes user-level code without modeling the
operating system. System calls are bypassed and serviced by
the underlying host. This mode is also referred to as system-call
emulation mode. On the other hand, a full-system simulator
models the entire computing system, including memory, and
I/O subsystems while running an unmodified operating system.

gem5 is a state-of-the-art architectural simulator with an
active user and developer community. It is extremely config-
urable, supports multiple ISAs, and can perform full-system
simulations with network and device modeling. This makes

-0.2

0

0.2

0.4

0.6

0.8

1

Atomic Timing Minor O3 Atomic Timing Minor O3 Atomic Timing Minor O3 Atomic Minor O3

Si
mu

la
ti

on
 T

im
e

No
rm

al
iz

ed
 t

o
In

te
n_

Xe
on

Intel_Xeon M1_Pro M1_Ultra

gem5 processes = # of
physical cores

single gem5 process gem5 processes = # of
hardware threads

FULL-SYSTEM SYSCALL-EMULATION

Fig. 1: Geometric mean of the normalized simulation time when
running PARSEC and SPLASH-2x workloads on gem5. gem5
runs on Intel_Xeon, M1_Pro, and M1_Ultra. Atomic,
Timing, Minor, and O3 are gem5 CPU types.

gem5 a valuable tool for evaluating future accelerators, proces-
sor cores, system-on-chips, hardware/OS/network interactions,
and heterogeneous systems [20].

One observation that motivated this work is the drastic differ-
ence in simulation speed when running gem5 on different server
platforms. Fig.1 shows the geometric mean of the simulation
time of executing gem5 on a MacBook Pro (M1_Pro) and a
Mac Studio (M1_Ultra), normalized to the simulation time
on a Dell server equipped with Xeon Gold Scalable CPUs
(Intel_Xeon) across all nine (9) PARSEC and SPLASH-2x
workloads. Both MacBook and Mac Studio are equipped with
Apple M1 chips. More information on the workloads, simulated
system configuration, physical hardware configurations, and
experimental methodology are provided in Sec.III. We run gem5
in full-system (FS) and system-call emulation (SE) modes. An
important parameter in the tests performed is the number of
processes simultaneously running on each platform. In the left
most and right most sub-graphs of Fig.1, we run a single gem5
process on the host server, while in the middle sub-graphs,
we co-run one gem5 process per physical core and one gem5
process per hardware thread. There are 4, and 16 performance
cores in M1_Pro and M1_Ultra, and 20 physical cores
and 40 hardware threads on Intel_Xeon. Therefore for co-
running scenarios, we launch 4 (M1_Pro), 16 (M1_Ultra),
20 (Intel_Xeon for “gem5 processes = # of physical cores”
with SMT off configuration), and 40 (Intel_Xeon for “gem5
processes = # of hardware threads” with SMT on configuration)
gem5 processes.

As shown in the figure, regardless of whether SMT is turned
on or off for Intel_Xeon (it is worth noting that M1_Pro
and M1_Ultra does not support hardware multithreading),
simulation mode (full system vs. system-call emulation) or
simulation detail (Atomic vs. Timing or In-order vs. Out-of-
Order), M1 platforms consistently deliver lower simulation
time. This applies to different benchmarks simulated on gem5
as illustrated in Fig.1. The simulation speed of M1 platforms
is even higher when co-running multiple gem5 processes. As
depicted, running gem5 on an M1_Ultra is up to 4.15× faster
compared with execution on a high-end Xeon server. We see on
average ∼47% performance improvement on Intel_Xeon
with SMT disabled. That is, the simulation time of running
20 gem5 processes (with SMT disabled) is ∼47% less than
running 40 gem5 processes (SMT enabled). As we will discuss

2

in Sec. IV this is expected since gem5 is sensitive to L1 cache
size and disabling SMT will reduce cache contention, thus
improving the overall simulation speed.

Motivated by the huge speedup gains by just running gem5
on a different platform, we set out to profile the execution of
gem5 on both Intel and M1 platforms to shed light on gem5’s
execution bottlenecks. Many of our insights from profiling
gem5 can be applied to other architectural simulators or even
simulators in different fields.

III. METHODOLOGY

In terms of simulation configurations, we change the CPU
type, number of CPUs, and memory size. We use the following
CPU types:
AtomicSimpleCPU (Atomic): CPU type with CPI = 1 where
memory accesses are atomic and completed without modeling
any contention or queuing delays.
TimingSimpleCPU (Timing): CPU type with CPI = 1 where
memory accesses are modeled in detail considering the queuing
delays and resource contentions in the memory and intercon-
nect.
In-order CPU (Minor): In-order or Minor CPU models a fixed
pipeline with strict in-order instruction execution. Minor CPU
uses the detailed timing memory model for accessing memory.
Out-of-order CPU (O3): O3 CPU models an out-of-order
superscalar loosely based on the Alpha 21264 core. O3 CPU
uses the detailed timing memory model for accessing memory.

Simple CPUs are used for fast-forwarding simulation, warm-
ing up caches, or for studies that do not require detailed
CPU modeling. In-order and out-of-order CPU models are
used for detailed microarchitectural studies. Table I shows the
processor configuration for each CPU type. We used Linaro
7.5.0 toolchain for SPLASH-2x and an Ubuntu 18.04 disk
image for PARSEC workloads, respectively. We use Linux
kernel 5.4.0 and ARM ISA for full-system simulations [27].

TABLE I: Base Hardware Configuration on FireSim

Parameters Value
Core Frequency 4GHz

Number of Cores 4 Cores
Superscalar 8-width wide

ROB/IQ/LQ/SQ Entries 192/64/32/32
Int & FP Registers 128 & 192

Branch Predictor/BTB Entries TournamentBP/4096
Cache: L1I/L1D 48KB(I), 32KB(D)

DRAM 2GB, DDR3-1600-8x8
Operating System Linux Linaro (kernel 5.4.0)

We simulate the following workloads on gem5:
• Boot-Exit: Boot Linux in FS mode and immediately exit.

Note that M1_Pro and M1_Ultra cannot take readable
checkpoints so we use them to recover from checkpoints
taken by Intel_Xeon.

• PARSEC: We execute Canneal, Blackscholes,
Dedup, and streamcluster within the mainline
PARSEC 3.0 benchmark and water_nsquared2,
water_spatial, ocean_ncp, ocean_cp, and fmm

2In this paper, Top-Down microarchitectural analysis was carried out using
water nsquared as a representative workload from PARSEC benchmark suite

apps within SPLASH-2x [28] benchmark suite. The bench-
mark input size used for all workloads is simmedium.

• C++ program: Because FireSim is orders of magni-
tude slower than real hardware (a gem5 simulation
that completely executes in 2.34 seconds on a quad-
core Intel_Xeon host results in a slowdown of
∼118× on Firesim), we run a simple algorithm called
Sieve_of_Eratosthenes on the simulated node on
FireSim to evaluate the performance of gem5.

TABLE II: Evaluation platforms
Platform Dell Precision 7920 Apple Macbook Apple MacStudio

Config Name Intel_Xeon M1_Pro M1_Ultra
SoC Xeon Gold 6242R M1 M1 Ultra

micro-architecture Cascade Lake Firestorm(P) + Icestorm(E)
Cores 20C/40T P:4C/4T + E:4C/4T P:16C/16T + E:4C/4T

Max Freq 3.1GHz (4.1GHz TB) 3.2GHz(P), 2GHz(E) 3.2GHz(P), 2GHz(E)
L1 32KB(I) + 32KB(D) P:192KB(I) + 128KB(D)

(per-core) E:128KB(I) + 64KB(D)
L2 20MB P:12MB + E:4MB P:48MB + E:8MB
L3 35.75MB 8MB 96MB

Cacheline 64B 128B 128B
Memory 96GB, DDR4-2933 8GB, LPDDR4X-4266 64GB, LPDDR5-6400

DRAM BW 141 GB/s 68 GB/s 819.2 GB/s
Single core BW 45 GB/s 58 GB/s 58 GB/s(unloaded)
DRAM Latency 96ns 97ns 97ns
VM page size 4KB 16KB 16KB

We used the Intel VTune profiler [29] to access the processor
performance counters and perform the Top-Down microarchi-
tectural analysis [30]. To collect performance counters on the
Intel_Xeon CPUs, perf was used [31] . We also profile
Apple M1 CPUs by reading performance counters from the
privileged level [32]. We modify the main simulation loop
function in gem5 to read the performance counters for each
execution.

Experiments are run on three platforms. Table II summarises
the configuration of these three platforms [33]. We refer to
these platforms using their configuration name (Config Name
in Table II) throughout the paper: Intel_Xeon, M1_Pro,
M1_Ultra.

Since gem5 is a single-threaded application, its microarchi-
tectural behavior can be directly compared to single-threaded
CPU benchmarks. For this comparison, we choose a mix of 3
benchmarks from the SPEC 2017 benchmark suite [34]. The
SPEC workloads that we choose are:

• 525.x264_r has been observed to have the highest IPC
of all benchmark in SPEC 2017 suite [35].

• 531.deepsjeng_r has a large memory footprint and
has been observed to have the highest L3 cache miss rate
among other SPEC benchmarks [36].

• 505.mcf_r is chosen due to its high front-end and
back-end stalls resulting from cache misses, and branch
misprediction. 505.mcf_r has the lowest IPC of all
benchmarks in SPEC 2017 suite [35].

Note that we run SPEC benchmarks on bare metal hardware,
not on gem5. We only use SPEC benchmarks as a reference
to compare with gem5’s top-down profile in Sec.IV-A.

Using FireMarshal [37], we run gem5 as a workload on
Firesim [17] for profiling purposes. In our study, we execute
gem5 in system-call emulation mode on a chipyard SoC design
[38]. Our base hardware configuration on Firesim is a quad-core
Rocket chip, which is a RISC-V open-source CPU with a single-

3

-30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

505.MCF_R

531.DEEPSJENG_R

525.X264_R

ATOMIC_PARSEC

ATOMIC_BOOT_EXIT

TIMING_PARSEC

TIMING_BOOT_EXIT

MINOR_PARSEC

MINOR_BOOT_EXIT

O3_PARSEC

O3_BOOT_EXIT

SP
EC

GE
M5

Retiring(%) Front-End Bound(%) Bad Speculation(%) Back-End Bound(%)

Fig. 2: Top-level bottleneck breakdown of gem5 (top) and
SPEC (bottom) running on Intel_Xeon platform. Note that
we include the SPEC workload analysis to provide a reference
for comparison. The SPEC benchmarks are running on native
hardware.

issue, in-order pipeline processor. Our design incorporated
an 8KB 2-way set associative iCache, an 8KB 2-way set
associative dCache, and a 512KB 8-way SiFive set associative
cache, each with a 64-byte block size. We also use a host FPGA
frequency of 140MHz and a DDR3FRFCFSLLC4MB config
fragment to emulate the memory model. We build different
custom hardware designs by varying the cache configs which
we discuss in Sec. V-B.

IV. PROFILING GEM5

In this section, we profile gem5 simulating various configu-
rations and report microarchitectural statistics to demystify the
execution inefficiencies of gem5 as an application. Our goal is
to gain some insights into the execution profile of gem5 to set
the stage for future targeted hardware-level, system-level, and
application-level optimizations that will make gem5 run faster.

A. Top-Down Analysis on Intel Xeon Platform

We use VTune to perform a Top-Down microarchitectural
performance analysis [30] of gem5 when simulating different
workloads with varying configurations. Top-Down analysis
split the machine cycles into four categories: retiring, front-end
bound, bad speculation, and back-end bound. Ideally, we want
every cycle to be categorized as retiring, which is the only
category in which the CPU performs useful work. A cycle is
considered to be front-end bound if the fetch and decode units
(i.e., front-end of the out-of-order processor) cannot supply
sufficient µ-ops for the back-end. The main culprits for front-
end bound cycles are iCache/iTLB misses and inefficiencies in
the instruction decoders. A cycle is considered to be back-end
bound when the processor is stalled because there are not
enough resources in the back-end. This would occur when the
load/store queue is full or the functional units are all busy.
Lastly, a cycle is considered to be bad speculation when a
cycle is lost due to running miss-speculated instructions or
recovering from previous bad speculation.

Fig.2(top) shows the top-level profiling results categorizing
the CPU cycles spent executing gem5 with different CPU

-15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

505.MCF_R

531.DEEPSJENG_R

525.X264_R

ATOMIC_PARSEC

ATOMIC_BOOT_EXIT

TIMING_PARSEC

TIMING_BOOT_EXIT

MINOR_PARSEC

MINOR_BOOT_EXIT

O3_PARSEC

O3_BOOT_EXIT

SP
EC

GE
M5

Front-End Latency Front-End Bandwidth

Fig. 3: Front-end latency bound cycles breakdown for gem5
(top) and SPEC (bottom) running on Intel_Xeon.

types. To have a reference for comparison, we also run three
SPEC 2017 benchmarks with diverse characteristics on the
Intel_Xeon platform and show their Top-Down analysis at
the bottom of Fig.2. Refer to Sec.III for more information on
the choice of SPEC benchmarks. As shown, 43.5∼64.7% of
cycles retire instructions across different gem5 simulations.
This is a relatively high retiring percentage compared to
conventional workloads. As shown in the figure, the retiring
cycle percentage for SPEC 2017 benchmarks are between
13.2∼82.2%. However, gem5’s front-end bound cycles are
much higher while the back-end bound cycles are lower
compared with SPEC. 505.mcf_r, which is a memory-
intensive workload. It has 53.7% of back-end bound cycles
while gem5 workloads only spent 0.9%∼11.3% of their cycles
stalling for back-end. This is expected since gem5’s dynamic
working set increases very slowly while simulating different
workloads as gem5 is orders of magnitude slower than real
hardware. Moreover, the simulated memory size is often small
and limited to a few gigabytes, which is not even fully touched
by the simulated workload. The small dynamic working set
size and temporally slow memory access to this working set
results in predictable data cache accesses from gem5 that can be
efficiently captured by the hardware prefetchers or overlapped
in the out-of-order engine of the modern processors.

Hyper-scale workloads such as web-search, web-serving,
and video processing are known to have large instruction cache
footprint and thus are considered to be front-end bound as
their front-end bound cycles are 2∼3× more than those in
typical SPEC benchmarks [39] (in the 15∼30% range across
various workloads). Looking at Fig.2(top), the front-end bound
cycles for gem5 are in the 30.1%∼41.5% range, which is even
higher than that of hyper-scale workloads. Next, we present a
breakdown of performance events impacting front-end bound
stall cycles to find out why such a large number of cycles are
spent waiting for the front-end to supply instructions.

Figure 3 shows the classification of the front-end bound
cycles between front-end bandwidth and latency. The main
reasons for bandwidth- and latency-bound cycles are inef-
ficiencies in instruction decoding and iCache/iTLB misses,
respectively. As shown in Fig.3(top), simpler CPU models are
more skewed toward bandwidth-bound and as the level of CPU
detail increases, the front-end becomes more latency-bound.

4

-10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40%

505.MCF_R

531.DEEPSJENG_R

525.X264_R

ATOMIC_PARSEC

ATOMIC_BOOT_EXIT

TIMING_PARSEC

TIMING_BOOT_EXIT

MINOR_PARSEC

MINOR_BOOT_EXIT

O3_PARSEC

O3_BOOT_EXIT

SP
EC

GE
M5

Icache Misses ITLB Overhead

Mispredict Restreers Clears Resteers

Unknown Branches DSB Switches

Length Changing Prefixes MS Switches

Fig. 4: Front-end latency bound cycles breakdown for gem5
(top) and SPEC (bottom) running on Intel_Xeon.

This can be explained by the fact that as the complexity of the
CPU model increases, gem5 touches more simulation object
binaries for processing each event. Therefore, the instruction
cache footprint increases with the CPU model complexity, and
consequently, gem5 becomes more front-end latency-bound.
Compared with SPEC, gem5 is more front-end bandwidth-
bound. Next, we zoom into the front-end latency and bandwidth
breakdown to better understand the bottlenecks in the front-end
when executing gem5 on Intel_Xeon.

Figure 4(top) plots the breakdown of front-end latency-
bound cycles. As illustrated in the figure, the O3 and Minor
CPUs have up to 11× higher iCache misses compared with
Atomic CPU simulations. Interestingly, stalled cycles due to
iTLB misses are high across all gem5 executions. On the
other hand, SPEC benchmarks are neither iCache nor iTLB
bound. Along with iCache and iTLB overheads, we see a
huge increase in the branching-related overhead when using
O3 and Minor CPUs. The aggregated branching overhead
for O3 PARSEC and Minor PARSEC (sum of Mispredict
Resteers, Clear Resteers, and Unknown Branches) is 6.0×
and 4.7× higher than that of ATOMIC PARSEC. As shown
in the figure, by using more detailed CPUs, the percentage
of unknown branches significantly increases. The high branch
overhead of detailed gem5 simulation occurs because increasing
the CPU model’s complexity initiates more function calls,
parameter checks, and event generation and activation. These,
in turn, increase the branch density of the code, contribute
to the large branch overhead, and increase the number of
hard-to-predict branches. For SPEC benchmarks, the branching
category contributes to the majority of the front-end latency-
bound cycles. Mispredict Resteers and Unknown Branches
alone contribute to 43.5%∼73.6% of total front-end latency-
bound cycles in SPEC benchmarks.

Figure 5(top) shows the breakdown of bandwidth-bound
cycles. Interestingly, between 92∼97% of the front-end
bandwidth-bound cycles are limited due to waiting for MITE
(Micro-Instruction Translation Engine), and only less than 7%
are bounded by the DSB (know as Decoded iCache or µOp
Cache) µOp supply. µOp cache is a small memory structure
in the decoder unit that holds hot µOp traces. µOp cache
works for codes with lots of instruction reuse and loops, which

-5% 0% 5% 10% 15% 20% 25%

505.MCF_R

531.DEEPSJENG_R

525.X264_R

ATOMIC_PARSEC

ATOMIC_BOOT_EXIT

TIMING_PARSEC

TIMING_BOOT_EXIT

MINOR_PARSEC

MINOR_BOOT_EXIT

O3_PARSEC

O3_BOOT_EXIT

SP
EC

GE
M5

Front-End Bandwidth MITE Front-End Bandwidth DSB Front-End Bandwidth LSD

Fig. 5: Front-end bandwidth bound cycles breakdown for gem5
(top) and SPEC (bottom) running on Intel_Xeon.

-10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

505.MCF_R

531.DEEPSJENG_R

525.X264_R

ATOMIC_PARSEC

ATOMIC_BOOT_EXIT

TIMING_PARSEC

TIMING_BOOT_EXIT

MINOR_PARSEC

MINOR_BOOT_EXIT

O3_PARSEC

O3_BOOT_EXIT

SP
EC

GE
M5

DSB Coverage

Fig. 6: DSB (µOp Cache) coverage of gem5 (top) and SPEC
(bottom) running on Intel_Xeon.

are both rare in gem5. The irregularity in the gem5’s code
results in a lot of pressure on the instruction decoder to supply
enough instructions to the back-end. Compared to gem5, as
shown in Fig.5(bottom), when running SPEC, more of the
front-end bandwidth-bound cycles are categorized under DSB.
This is because the DSB coverage for regular applications is
often very high. Fig.6 compares the DSB coverage of gem5
and SPEC benchmarks running on Intel_Xeon. As shown,
the DSB coverage of gem5 is much lower than that of SPEC,
regardless of the CPU type or workload. This puts pressure on
the decoder and thus, the MITE stall cycles are high for gem5
simulations.

B. Profiling gem5 on M1

In the previous subsection, we performed a detailed top-down
analysis of gem5 running on a Intel_Xeon platform and
compared its behavior against conventional SPEC benchmarks.
We understand that the front-end of the Intel_Xeon is the
bottleneck in running gem5 simulations. There are many iCache
and iTLB misses, and the instruction decoder of complex x86
instructions cannot feed enough µops to the out-of-order back-
end. We perform the analysis while running gem5 simulations
using three CPU types (Atomic, Timing, and O3), then we
execute water_nsquared on gem5.

Figure 7 compares the average instruction per cycles (IPC)
and CPU stalled cycles of Intel_Xeon, M1_Pro, and
M1_Ultra when running gem5 simulations. IPC of M1_Pro

5

0

2

4

6

M1_Pro M1_Ultra Intel_Xeon

IPC

0.0000001% 0.0000003%

7.72%

0%

2%

4%

6%

8%

M1_Pro M1_Ultra Intel_Xeon

Fr
ac
ti
on
 o
f
st
al
le
d
cy
cl
es

Stalled CPU Cycle

Fig. 7: IPC (left) and percentage of stalled CPU Cycles (right)
for Intel_Xeon, M1_Pro, M1_Ultra running gem5.

0.001%

3.58% 10.30%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

iTLB dTLB icache dcache branch
prediction

mi
ss
 r
at
e

M1_Pro M1_Ultra Intel_Xeon

Fig. 8: Performance comparison of TLB, L1 cache, and branch
predictor of Intel_Xeon, M1_Pro, and M1_Ultra.

and M1_Ultra are 2.22× and 2.24× higher than that of
Intel_Xeon, respectively. This margin in IPC values across
both platforms reflects on the simulation time differences
illustrated in Fig.1. Unsurprisingly, the time percentage that
Intel_Xeon is stalled is much higher than that of M1_Pro
and M1_Ultra.

Figure 8 compares the TLB, L1 cache, and branch prediction
performance of Intel_Xeon, M1_Pro, and M1_Ultra
when running gem5 simulations. As shown in the figure, the
iTLB, dTLB, and L1 cache miss rates of M1 platforms are
much lower than that of Intel_Xeon; iTLB and dTLB
miss rates of Intel_Xeon are 11.7× and 10.5× higher
than that of M1_Ultra, respectively. We believe the main
cause of the performance difference between M1 platforms
and Intel_Xeon reported in Fig.1 are the TLB and L1
caches. Looking at Table I, the performance cores in both
M1_Pro and M1_Ultra have 192KB iCache and 128KB
dCache, while Intel_Xeon has 32KB iCache and 32KB
dCache. This is 6× and 4× larger iCache and dCache for M1
platforms, respectively.

Although there is no information on the associativity of the
L1 cache of M1 platforms, we can reverse engineer the number
of ways assuming that the L1 is implemented as a virtually-
indexed, physically tagged (VIPT) cache. In VIPT caches,
the total capacity of a single way cannot exceed the virtual
memory page size in order to overlap the TLB access (address
translation) with indexing into the cache [40]. Since M1 uses
16KB virtual memory page sizes, the iCache and dCache
associativity should be 12 and 8, respectively. The number
of ways for the 32KB icache and dcache of Intel_Xeon
is 8 ways. Therefore, the 10.1×∼13.4× reduction in dCache
miss rate for M1 platforms shown in Fig.8 is mostly due to
the reduction in capacity and compulsory misses (4× higher
capacity, 2× larger cache line size).

We also notice that the branch prediction accuracy of M1
platforms is higher than that of Intel_Xeon. As shown in

0

0.5

1

1.5

2

Atomic Timing O3 Atomic Timing O3Me
mo
ry
 B
an
dw
id
th
 (
MB
)

SE Simulation FS Simulation

0

1000

2000

3000

4000

Atomic Timing O3 Atomic Timing O3

LL
C
Oc
cu
pa
nc
y
(K
B)

SE Simulation FS Simulation

Fig. 9: LLC occupancy and memory bandwidth utilization
of gem5 running with different configurations and operating
modes on Intel_Xeon.

Fig.8, the branch misprediction rate of Intel_Xeon is 0.22%
while both M1 platforms have ∼0.14% branch misprediction
rates. In Sec.V-B we run gem5 on FireSim and study the
impact of changing the L1 and L2 cache configurations of the
host (simulation server) on gem5’s performance. What is clear
is that the combination of using larger cache lines (64B vs.
128B), larger virtual memory page size (4KB vs. 16KB), and
larger L1 caches 3 (32KB vs. 128KB) dramatically improves
L1 and TLB performance in M1 platforms. The performant
TLB, L1, and branch predictor results in higher IPC, and in
turn, higher simulation speed for M1_Pro and M1_Ultra
when compared to Intel_Xeon (Fig.7 and Fig.1).

Figure 9(left) shows the LLC occupancy per gem5 process
and Fig.9(right) shows the DRAM bandwidth utilization of
gem5 when running simulations with different CPU models
in Full-System (FS) and System-call Emulation (SE) modes
on Intel_Xeon. Unfortunately, we were not able to find L2,
LLC, or DRAM-related performance counters on M1 platforms.
Therefore, we could not include M1-related information in
Fig.9. As shown in Fig.9 (right), surprisingly, the DRAM
bandwidth utilization of gem5 is negligible regardless of
whether it is running in FS or SE mode. Such low DRAM
bandwidth utilization suggests that gem5’s data set size fits in
the last-level cache (LLC). Fig.9 (left) plots the LLC occupancy
of a single gem5 process running on Intel_Xeon. As shown,
the LLC occupancy increases with the detail level of simulation,
and a gem5 simulation with O3 CPU has the largest instruction
and data footprint compared to simulation with Atomic and
Timing CPUs. The LLC occupancy of a single gem5 process
is between 255KB∼3.1MB.

V. SENSITIVITY ANALYSIS OF SIMULATION SPEED

In this section, we leverage our insights from Sec. IV to
perform a sensitivity analysis for the simulation speed of
gem5. We divide the analysis into systems and architecture
sensitivity. Under the systems analysis, we study the sensitivity
of simulation speed to several systems and compiler parameters
that do not require changes to the server hardware or gem5
application. Under architecture analysis, we study the sensitivity
of simulation speed to the size and associativity of the L1
and L2 caches of the simulation server. Since such analysis
requires changes to the hardware, we run gem5 on FireSim
and configure FireSim to simulate a host server with various
cache configurations. We run unmodified gem5 on FireSim.

3The larger virtual memory page size enables the implementation of low-
associativity, large VIPT L1 caches in M1 platforms as explained earlier.

6

5.9% 5.05%

0%

1%

2%

3%

4%

5%

Atomic Boot
Exit

Atomic
Parsec

Timing Boot
Exit

Timing
Parsec

Minor Boot
Exit

Minor
Parsec

O3 Boot
Exit

O3 Parsec

% Speedup (EHP) % Speedup (THP)

Fig. 10: Performance gain from enabling huge pages for gem5
simulations running on Intel_Xeon.

A. Sensitivity to System Configurations

As discussed in detail in Sec.IV-A, due to the large instruc-
tion footprint of gem5, we observe many stalled cycles due
to iTLB misses while running gem5 simulations. A simple
solution to the iTLB misses is to use huge pages to back
gem5 code/text. We explored two ways to back gem5 code/text
regions with huge pages: Transparent Huge Pages (THP) and
Explicit Huge Pages (EHP). Linux supports Transparent Huge
Pages (THP) [41] which is a kernel feature that provides
dynamic huge page allocations at application runtime. The
current Linux THP implementation only works with anonymous
memory mappings (i.e., the memory that is not backed by the
file system such as implicit memory allocations on the heap and
stack) and tmpfs/shmem. We utilize an open-source library by
Intel [42] to back gem5’s code segment with transparent/explicit
huge pages. By invoking a few API calls at the beginning of
gem5 runtime, the library automatically remaps a subset of
gem5’s code to 2MB huge pages [43]. We also explored the
use of libhugetlbfs library package [44], which requires that
gem5 be recompiled so the binary is aligned at huge page
boundaries. libhugetlbfs automatically backs the code, data,
heap, and shared memory segments with explicitly allocated
huge pages when invoked with requisite parameters. However,
our experiments show an abysmal improvement in simulation
time compared with Intel iodlr. We suggest this is a result of
a sub-optimal gem5 binary layout.

As shown in Fig.10, using huge pages to back the code of
gem5 improves simulation speed by up to 5.9%. The benefits
from using huge pages are low for simple CPU models (i.e.,
Atomic and Timing CPUs), while the benefits for more detailed
CPU models are higher. This is expected because the code
footprint of simple CPUs is smaller than that of detailed CPU
models. This is in line with our discussion in Sec.IV-A and
Fig.3 which illustrates that the simulation of simpler CPUs is
less front-end latency bound compared to detailed CPUs.

We do not see any specific pattern in the performance of
EHP and THP. For some configurations, EHP performs better
than THP. Fig.11 shows the improvement in iTLB overhead
and retiring cycles when backing gem5’s code with THP. As
shown in Fig.11(top), using THP significantly reduces the
iTLB overhead for Minor and O3 simulations. On average,
THP reduces the iTLB overhead by 63%. The improvement in
iTLB overhead results in 3∼7% improvement in the number

-10%

10%

30%

50%

70%

Atomic-Boot
Exit

Atomic Parsec Timing Boot
Exit

Timing Parsec Minor Boot
Exit

Minor Parsec O3 Boot Exit O3 Parsec

iTLB Overhead

-1%

1%

3%

5%

7%

Atomic-Boot
Exit

Atomic Parsec Timing Boot
Exit

Timing Parsec Minor Boot
Exit

Minor Parsec O3 Boot Exit O3 Parsec

Retiring Cycles

Fig. 11: Improvement in iTLB overhead and retiring cycles
when backing gem5 code with transparent huge pages.

-1.0%

0.0%

1.0%

2.0%

3.0%

Atomic
Boot Exit

Atomic
Parsec

Timing
Boot Exit

Timing
Parsec

Minor
Boot Exit

Minor
Parsec

O3 Boot
Exit

O3 Parsec

co
mp
il
er
 o
pt
im
iz
at
io
n
sp
ee
du
p

M1_Ultra M1_Pro Intel_Xeon

Fig. 12: Improvement in gem5 simulation speed when apply-
ing compiler optimizations on Intel_Xeon, M1_Pro, and
M1_Ultra platforms.

of retiring clock cycles in the CPU pipeline for Minor and O3
CPU simulations (Fig.11(bottom)).

Next, we study the impact of compiling gem5 using the
“-O3” flag passed to the GNU G++ compiler. We modified the
scons script to compile gem5 with a higher level of compiler
optimization (i.e, “-O3” flag). Though we used gem5.opt,
we still notice a reduction in the size of the resulting binary
and in the simulation time. Fig.12 compares the simulation
speed up when using a gem5 binary that is compiled with
“-O3” flag compared with baseline gem5 compiled without
the optimization flag. On average, this simple change in the
build process results in 1.38%, 0.98%, and 0.78% speedup for
Intel_Xeon, M1_Pro, and M1_Ultra platforms. “-O3”
flag only performs static compile time optimizations and thus
there is a possibility for hurting the application speed after
applying the optimizations. We see a few instances of such
cases in Fig.12.

Lastly, we study the impact of CPU frequency on gem5
speed. Fig.13 shows how simulation time changes when running
gem5 on Intel_Xeon operating at various frequencies. The
simulation times in Fig.13 are normalized to the run with
3.1GHz frequency. As expected, reducing CPU frequency from
3.1GHz to 1.2GHz increases the simulation time by 2.67×.
This shows a linear increase in simulation time with a reduction
in CPU frequency.

7

0

1

2

3

4

5

6

7

8

9

1200MHz 1700MHz 2200MHz 2700MHz TurboBoost

Si
mu
la
ti
on
 T
im
e
No
rm
al
iz
ed
 t
o

31
00
MH
z
ru
n

Atomic Timing O3

Fig. 13: Normalized gem5 simulation time when changing
CPU frequency and enabling Turbo Boost on Intel_Xeon
platform. The simulation times are normalized to the baseline
CPU running at 3100MHz without TurboBoost.

B. Sensitivity to Architectural Configurations

In this subsection, we run gem5 on FireSim and change the
L1 and L2 configurations of the O3 core in FireSim to study
gem5’s sensitivity to the cache configuration of the simulation
server. As mentioned earlier, since FireSim is much slower
than real hardware, we run a simple C++ application on gem5
and do not run PARSEC.

Figure 14 compares the simulation time of gem5 running
on a server with various L1 and L2 configurations. The cache
line size and virtual memory page size in the simulated node
in FireSim are 64B and 4KB, respectively. Since the L1 cache
is a VIPT cache, to increase the L1 size we only increase the
associativity and keep the number of sets fixed at 64 to overlap
TLB access and L1 cache indexing. We use the following
format to represent different L1 and L2 configurations in
Fig.14: (iCache size/iCache associativity : dCache size/dCache
associativity : L2 size/L2 associativity).

As illustrated in Fig.14, increasing the size of both iCache
and dCache are critical in improving the simulation speed. The
simulation times are normalized to a baseline configuration
with 8KB 2-way set associative iCache/dCache and a 512KB
8-way set associative L2 cache. Increasing iCache and dCache
size from 8KB to 16KB reduces Atomic, Timing, and O3
simulation time by 30%, 25%, and 18%. On the other hand,
doubling L2 cache size from 1MB to 2MB has almost no impact
on the simulation time. The best-performing configuration
is the last configuration where we keep L2 the same size
as the baseline and configure both iCache and dCache as
64KB 16-way set-associative caches (64KB/16 : 64KB/16
: 512KB/8). This configuration improves simulation speed
by 68.7%, 68.2%, and 43.8% for Atomic, Timing, and O3
simulations, respectively. We notice that gem5 simulations
with O3 CPU benefit less than simpler CPU models from
increasing L1 cache size. We suspect that the TLB bottleneck
in detailed simulations limits the benefits of the larger L1 size.

VI. DISCUSSION OF FUTURE WORK

Our detailed microarchitectural analysis revealed the bottle-
necks in gem5 execution. The fact that changing the physical

68.7% 68.2%

43.8%

-20%

0%

20%

40%

60%

80%

Atomic Timing O3

Si
mu
la
ti
on
 S
pe
ed
up
 N
or
ma
li
ze
d
to

(8
KB
/2
 :
 8
KB
/2
 :
 5
12
KB
/8
)

(16KB/4 : 16KB/4 : 512KB/8) (16KB/4 : 64KB/16 : 512KB/8)

(64KB/16 : 16KB/4 : 512KB/8) (32KB/8 : 32KB/8 : 512KB/8)

(16KB/4 : 16KB/4 : 1024KB/8) (16KB/4 : 16KB/4 : 2048KB/8)

(64KB/16 : 64KB/16 : 512KB/8)

Fig. 14: Simulation speedup when running gem5 on FireSim
with varying cache configurations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50

CD
F
of
 E
xe
cu
ti
on
 T
im
e

Number of Functions

Atomic Timing Minor O3

Fig. 15: Top 50 hottest functions in gem5 when simulating a
PARSEC workload with different CPU types.

platform can result in significant simulation speedup motivates
us to think about developing specialized computing platforms
for running architectural simulations. One potential area to
explore is to offload simulation entirely or partially to a
hardware accelerator.

For an application to be qualified for hardware acceleration,
the application needs to be (1) widely used and (2) stable
with no structural changes over time. gem5 satisfies the first
requirement as it is a popular application with a growing
user base in both academia and industry. Although gem5 is
constantly changing, its core, which is the event queue and event
scheduler has been the same for many years, and will probably
remain the same in the future. Therefore, gem5 satisfies the
second requirement as well.

Figure 15 shows the cumulative distribution function (CDF)
of the CPU time of the 50 hottest functions executed in gem5
simulating different CPU types. As shown, there is no killer
function inside the gem5 source code whose optimization would
significantly improve the simulation time. The hottest function
in Atomic, Timing, Minor, and O3 CPU types contribute to
10.1%, 8.5%, 2.9%, and 4.2% of the total simulation time,
respectively. As we increase the complexity of the CPU, the
CDF of individual function execution time gets flatter; meaning
that the hotness of individual functions gets lower. This is
not surprising since increased simulation complexity causes
more simulation objects to get activated in each event to more
accurately model the complexity of the hardware. Therefore,
more diverse functions get called when simulating with O3 CPU
type compared with simpler CPU models. The total number

8

of functions called throughout the simulation for the results
shown in Fig.15 are 1602, 2557, 3957, and 5209 for Atomic,
Timing, Minor, and O3 CPU types, respectively.

Since there is no killer function, accelerating even several
gem5 functions in hardware would not provide a significant
performance improvement. Therefore, the results of Fig.15
suggest that building an off-chip hardware accelerator for
gem5 is probably not an option. Instead, hardware acceleration
should be at a finer granularity and tightly coupled with the
CPU. The comparison of Intel_Xeon and M1 platforms
revealed that even a general-purpose CPU with some fine-
tuning of architectural and system parameters can significantly
improve gem5 performance. Detailed basic-block analysis of
gem5 source code is required to identify commonly used
operations and data structures to map them to specialized,
complex instructions. The open-source RISC-V ISA facilitates
the development of such a specialized CPU. Designing such
a specialized CPU for accelerating event-driven simulation is
an interesting future research direction. However, a short-term
solution is to utilize the configurability of current servers at
the system- and compiler-level optimizations to improve the
simulation execution.

VII. RELATED WORK

Acceleration of Simulation FireSim [17] is an FPGA Ar-
chitecture Model Execution (FAME) simulator [45]. FireSim
uses FPGAs to implement the complete RTL of a target
system to model the timing of future hardware. The timing
model can be decoupled from the real design such that
multiple host FPGA clock cycles are used to model one
target clock cycle when modeling complex logic. Although
FAME simulators significantly speed up the simulation speed,
developing new models on them is time-consuming, error-
prone, and inflexible. Therefore FAME cannot replace software-
base simulation. Parallel Discrete Event Simulation (PDES)
technique is used to simulate different components in parallel
and conservatively or optimistically synchronize them in fixed
intervals called quantum [46], [9], [47]. Using conservative
PDES for parallelizing the simulation of on-chip resources has
diminishing returns as the overhead of frequent synchronization
offsets the benefits of parallel execution. Therefore, PDES
simulators such as SST [47] only operate at larger component
levels since the speed of modeling individual components will
become a bottleneck in the overall simulation.

Sampling techniques and using hardware virtualization
support for fast-forwarding simulations are widely used for
improving the speed and accuracy of architectural simula-
tion [10], [11], [12], [13], [14]. Such techniques are orthogonal
to improving the speed of detailed simulation.
Top-Down Microarchitectural Analysis. There is a large
body of work on profiling applications and performing Top-
Down microarchitectural analyses on various applications such
as data analytics and cloud applications [48], [49], hyper-
scale services [39], SPEC benchmark [30], [35], [50], web
search [51], network stack [52], data-intensive applications [53],
[54], [55], video transcoding [56], graph applications [57],
network fuctions [58], and many more application domains.

However, no previous work has performed a detailed Top-
Down microarchitectural analysis to profile the execution of a
software-based architectural simulator.

VIII. CONCLUSION

There has been no work characterizing the execution
bottlenecks in gem5 even though it is considered one of
the most versatile and slowest architectural simulators and
has a huge active user community. In this work, we profiled
the performance characteristics of gem5 and demystified the
inefficiencies of gem5 simulations. Our detailed Top-Down
microarchitectural analysis reveals three main bottlenecks
in gem5 execution: (1) high iCache and iTLB misses, (2)
high branch resteer overheads, and (3) extremely low µOp
cache utilization when running on an Intel Xeon CPU. These
bottlenecks are the result of huge code size, cold code
execution, extensive use of virtual functions, and polymorphism
throughout the gem5 source code. We observe that running
gem5 on an Apple M1 MacBook reduces simulation time by up
to 3×times compared to a high-end Xeon server. Our profiling
results reveal that the larger L1 cache size along with the use
of a larger virtual memory page size leads to such performance
improvement for gem5. This work is the first step towards
better understanding the characteristics of detailed, software-
based architectural simulation and developing optimized server
solutions for accelerating the simulation of future computer
systems.

ACKNOWLEDGEMENT

This work was supported in part by grants from National
Science Foundation (CNS-2213807) and ACE, one of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] “John hennessy and david patterson 2017 acm a.m. turing award lecture,”
https://www.youtube.com/watch?v=3LVeEjsn8Ts, 2017.

[2] A. Akram and L. Sawalha, “A survey of computer architecture simulation
techniques and tools,” IEEE Access, vol. 7, 2019.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, 2011.

[4] W. Heirman, T. Carlson, and L. Eeckhout, “Sniper: Scalable and accurate
parallel multi-core simulation,” in 8th International Summer School on
Advanced Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES-2012). High-Performance and
Embedded Architecture and Compilation Network of . . . , 2012.

[5] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011.

[6] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, 2013.

[7] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[8] SST, “Sst simulation,” ://sst-simulator.org/.
[9] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and

N. S. Kim, “dist-gem5: Distributed simulation of computer clusters,” in
Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. IEEE, 2017.

[10] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and
D. Black-Schaffer, “Full speed ahead: Detailed architectural simulation at
near-native speed,” in 2015 IEEE International Symposium on Workload
Characterization, 2015.

9

https://www.youtube.com/watch?v=3LVeEjsn8Ts

[11] G. Borgström, A. Sembrant, and D. Black-Schaffer, “Adaptive
cache warming for faster simulations,” in Proceedings of the
9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, ser. RAPIDO ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3023973.3023974

[12] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the 30th annual international symposium on
Computer architecture, 2003.

[13] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, 2003.

[14] N. Nikoleris, L. Eeckhout, E. Hagersten, and T. E. Carlson, “Directed
statistical warming through time traveling,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3352460.
3358264

[15] J. Chen, M. Annavaram, and M. Dubois, “Slacksim: A platform for
parallel simulations of cmps on cmps,” SIGARCH Comput. Archit. News,
vol. 37, jul 2009. [Online]. Available: https://doi.org/10.1145/1577129.
1577134

[16] M. Alian, D. Kim, and N. S. Kim, “pd-gem5: Simulation infrastructure
for parallel/distributed computer systems,” IEEE Computer Architecture
Letters, vol. 15, 2016.

[17] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018.

[18] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “Hasim: Fpga-
based high-detail multicore simulation using time-division multiplexing,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 2011.

[19] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe,
D. Chiou, and K. Asanovic, “Ramp: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, 2007.

[20] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.

[21] J. C. Hoe, D. Burger, J. Emer, D. Chiou, R. Sendag, and J. Yi, “The
future of architectural simulation,” IEEE Micro, vol. 30, 2010.

[22] A. Robertson and R. Ibbett, “Hase: a flexible high performance
architecture simulator,” in 1994 Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences, vol. 1, 1994.

[23] Y. Jung, Y. Chiba, D. Kim, and Y. Kim, “simcore: an event-driven
simulation framework for performance evaluation of computer systems,”
in Proceedings 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), 2000.

[24] C. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A
parallel functional simulator for gpgpu,” in 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010.

[25] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, 2002.

[26] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for
computer system modeling,” Computer, vol. 35, 2002.

[27] “The arm research starter kit: System modelling using gem5,” https:
//github.com/arm-university/arm-gem5-rsk, Accessed Feb. 2023.

[28] X. Zhan, Y. Bao, C. Bienia, and K. Li, “Parsec3.0: A multicore
benchmark suite with network stacks and splash-2x,” SIGARCH
Comput. Archit. News, vol. 44, feb 2017. [Online]. Available:
https://doi.org/10.1145/3053277.3053279

[29] “Intel® vtune™ profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html#gs.jescps, 2021.

[30] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[31] T. Gleixner and I. Molnar, “perf,” https://github.com/torvalds/linux, 2008.
[32] “Reading m1 performance counters,” https://gist.github.com/ibireme,

commit = 173517c208c7dc333ba962c1f0d67d12, Accessed Nov. 2022.

[33] “Apple mac m1 microarchitectural features,” https://https://everymac.
com/, Accessed Dec. 2022.

[34] SPEC, “Spec 2017 documentation,” https://www.spec.org/cpu2017/Docs,
year = 2017,.

[35] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did spec
cpu 2017 broaden the performance horizon?” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[36] A. Limaye and T. Adegbija, “A workload characterization of the spec
cpu2017 benchmark suite,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2018.

[37] N. Pemberton and A. Amid, “Firemarshal: Making hw/sw co-design
reproducible and reliable,” in 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2021.

[38] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright,
J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, 2020.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ser. ISCA ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2749469.2750392

[40] W. H. Wang, J.-L. Baer, and H. M. Levy, “Organization and
performance of a two-level virtual-real cache hierarchy,” SIGARCH
Comput. Archit. News, vol. 17, apr 1989. [Online]. Available:
https://doi.org/10.1145/74926.74942

[41] A. Arcangeli, “Transparent hugepage support,” in KVM forum, vol. 9,
2010.

[42] “Intel optimizations for dynamic language runtimes,” https://github.com/
intel/iodlr, Accessed Oct. 2022.

[43] “Runtime performance optimization blueprint: Intel architecture
optimization with large code pages,” https://www.intel.com/content/www/
us/en/developer/articles/technical/runtime-performance-optimization-
blueprint-intel-architecture-optimization-with-large-code.html, Accessed
Dec. 2022.

[44] “libhugetlbfs,” https://github.com/libhugetlbfs/libhugetlbfs, Accessed Dec.
2022.

[45] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and D. Patterson,
“A case for fame: Fpga architecture model execution,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: Association for Computing Machinery,
2010. [Online]. Available: https://doi.org/10.1145/1815961.1815999

[46] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois,
“Adaptive and speculative slack simulations of cmps on cmps,” in 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture,
2010.

[47] A. F. Rodrigues, G. R. Voskuilen, S. D. Hammond, and K. S. Hemmert,
“Structural simulation toolkit (sst).” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2016.

[48] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Performance
characterization of in-memory data analytics on a modern cloud server,”
in 2015 IEEE Fifth International Conference on Big Data and Cloud
Computing, 2015.

[49] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of
the data analytics workload in cloudsuite,” in 2014 IEEE International
Symposium on Workload Characterization (IISWC), 2014.

[50] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson, “Fine-grain
power breakdown of modern out-of-order cores and its implications on
skylake-based systems,” ACM Trans. Archit. Code Optim., vol. 13, dec
2016. [Online]. Available: https://doi.org/10.1145/3018112

[51] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018.

[52] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson, “Tas: Tcp acceleration as an os service,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303985

[53] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, F. Tang, B. Xie,
C. Zheng, X. Wen, X. He, H. Ye, and R. Ren, “Data motifs: A lens
towards fully understanding big data and ai workloads,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3243176.3243190

10

https://doi.org/10.1145/3023973.3023974
https://doi.org/10.1145/3352460.3358264
https://doi.org/10.1145/3352460.3358264
https://doi.org/10.1145/1577129.1577134
https://doi.org/10.1145/1577129.1577134
https://github.com/arm-university/arm-gem5-rsk
https://github.com/arm-university/arm-gem5-rsk
https://doi.org/10.1145/3053277.3053279
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.jescps
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.jescps
https://github.com/torvalds/linux
https://gist.github.com/ibireme
https://https://everymac.com/
https://https://everymac.com/
https://www.spec.org/cpu2017/Docs
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/74926.74942
https://github.com/intel/iodlr
https://github.com/intel/iodlr
https://www.intel.com/content/www/us/en/developer/articles/technical/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html
https://www.intel.com/content/www/us/en/developer/articles/technical/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html
https://www.intel.com/content/www/us/en/developer/articles/technical/runtime-performance-optimization-blueprint-intel-architecture-optimization-with-large-code.html
https://github.com/libhugetlbfs/libhugetlbfs
https://doi.org/10.1145/1815961.1815999
https://doi.org/10.1145/3018112
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3243176.3243190

[54] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, and L. Zhang,
“Understanding big data analytics workloads on modern processors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, 2017.

[55] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “How data
volume affects spark based data analytics on a scale-up server,” in BPOE.
Springer, 2015.

[56] A. Lottarini, A. Ramirez, J. Coburn, M. A. Kim, P. Ranganathan,
D. Stodolsky, and M. Wachsler, Vbench: Benchmarking Video
Transcoding in the Cloud. New York, NY, USA: Association
for Computing Machinery, 2018, p. 797–809. [Online]. Available:
https://doi.org/10.1145/3173162.3173207

[57] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in 2018 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2018.

[58] J. Takemasa, Y. Koizumi, and T. Hasegawa, “Toward an ideal ndn
router on a commercial off-the-shelf computer,” in Proceedings of the
4th ACM Conference on Information-Centric Networking, ser. ICN ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3125719.3125731

11

https://doi.org/10.1145/3173162.3173207
https://doi.org/10.1145/3125719.3125731

	Introduction
	Motivation and Background
	Methodology
	Profiling gem5
	Top-Down Analysis on Intel Xeon Platform
	Profiling gem5 on M1

	Sensitivity Analysis of Simulation Speed
	Sensitivity to System Configurations
	Sensitivity to Architectural Configurations

	Discussion of Future Work
	Related Work
	Conclusion
	References

