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ABSTRACT

Transient execution attacks use microarchitectural covert chan-
nels to leak secrets that should not have been accessible during
logical program execution. Commonly used micro-architectural
covert channels are those that leave lasting footprints in the micro-
architectural state, for example, a cache state change, from which
the secret is recovered after the transient execution is completed.

In this paper, we present SpectreRewind, a new approach to cre-
ate and exploit contention-based covert channels for transient exe-
cution attacks. In our approach, a covert channel is established by
issuing the necessary instructions logically before the transiently ex-
ecuted victim code. Unlike prior contention based covert channels,
which require simultaneous multi-threading (SMT), SpectreRewind
supports covert channels based on a single hardware thread, mak-
ing it viable on systems where the attacker cannot utilize SMT.
We show that contention on the floating point division unit on
commodity processors can be used to create a high-performance
(~100 KB/s), low-noise covert channel for transient execution at-
tacks instead of commonly used flush+reload based cache covert
channels. We also show that the proposed covert channel works in
the JavaScript sandbox environment of a Chrome browser.
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« Security and privacy — Side-channel analysis and counter-
measures; Browser security.
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1 INTRODUCTION

Modern out-of-order microprocessors support speculative execu-
tion to improve performance. In speculative execution, instructions
can be executed speculatively before knowing whether they are in
the correct program execution path. If the speculation was wrong,
the instructions that were executed incorrectly—known as tran-
sient instructions [18]—are squashed and the processor then simply
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retries to fetch and execute the correct instruction stream. Unfortu-
nately, these transient instructions can potentially bypass both soft-
ware and hardware defenses to access secret data. The disclosure of
Spectre [18], Meltdown [20] and many other subsequently discov-
ered transient execution attacks [1, 9, 14, 15, 17, 19, 21, 22, 27, 29, 34—
37, 40] have shown the danger of these transient instructions.
Namely, the secrets they have access to can be encoded and trans-
mitted into microarchitectural covert channels and subsequently
recovered by normal, non-speculative instructions, thus allowing
the secrets to be visible to the attacker.

All known transient execution attacks share the same three basic
steps: (1) the attacker initiates speculative execution where the
secret is read improperly from memory or registers; (2) the secret
dependent transient instructions then encode and transmit the
secret to a micro-architectural covert channel; (3) finally, the secret
is recovered from the covert channel by normal (non-transient)
receiver instructions. Commonly used covert channels, such as
cache, are stateful as they leave lasting footprints in the micro-
architectural state, from which the secret is recovered after the
transient execution is completed. Many hardware defense proposals
aim to prevent such stateful covert channels either by hiding the
changes into additional hardware buffers [12, 16, 41] or by reverting
them when the transient instructions are squashed [25]. Such a
mitigation strategy is attractive from a performance standpoint, as
the transient instructions are allowed to execute normally, retaining
many of the performance benefits of speculative execution.

These types of defenses are effective at blocking transient exe-
cution attacks that utilize stateful covert channels. Unfortunately,
these techniques cannot be used to block attacks that both transmit
into and read from covert channels before transient instructions
have been squashed. SmotherSpectre [6] is the first to demonstrate
such in the context of a Spectre-based attack. By generating con-
tention on issue ports within SMT processors, SmotherSpectre is
able to create a covert channel that can transmit a secret between
the SMT threads. Such contention cannot be buffered or reverted,
as instructions have already waited to use the issue ports, affecting
their execution time.

In this paper, we present SpectreRewind, a new approach to
create and utilize contention-based covert channels in transient
execution attacks. Like SmotherSpectre, SpectreRewind allows the
attacker to both transmit and receive secret data before transient
execution has completed, allowing the attacker to bypass most de-
fense mechanisms that attempt to revert or hide micro-architectural
changes caused by the attack. However, unlike SmotherSpectre,
SpectreRewind does not require the attacker to utilize SMT, instead
the attack can be executed from a single hardware thread. While
traditional transient execution attacks locate the instructions that
will read from the covert channel logically after the instruction
that triggers the transient execution (e.g., a branch), SpectreRewind
takes the opposite approach and locates these instructions logically
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before the triggering instruction. This structure allows the trans-
mitting and receiving instructions to execute concurrently on a
modern out-of-order core and communicate the secret even before
the transient execution completes.

We identify that non-pipelined functional units can be exploited
to create SpectreRewind covert channels. In particular, we show
that contention on the floating point division unit in commod-
ity Intel, AMD, and ARM processors can create high bandwidth
(~100KB/s), low-noise (<0.01%) covert channels that are comparable
to commonly used cache-based covert channels. We also show that
the feasibility of our covert channel within a Chrome browser’s
JavaScript sandbox.

In summary, we make the following contributions:

e We introduce SpectreRewind, a new approach to create and
exploit contention based covert channels in transient execu-
tion attacks within the same hardware thread.

e We show that contention on non-pipelined floating point
division unit can create a high-bandwidth, low-noise covert
channel on commodity out-of-order processors.

e We demonstrate that the floating point division unit based
covert channel works in a JavaScript sandbox of Google
Chrome browser.

2 BACKGROUND

In this section, we provide necessary background on out-of-order
cores, transient execution attacks, and simultaneous multithreading
(SMT) hardware.

2.1 Out-of-order Processors
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Figure 1: Simplified out-of-order processor design. The Re-
Order Buffer holds and retires pops in logical program order,
while pops are issued to the execution units in out-of-order.

Modern high performance microprocessors implement out-of-
order execution to maximize instruction level parallelism and per-
formance.

Figure 1 shows a simplified example of an out-of-order processor.
In this example, instructions are translated into micro-operations
(nops) and placed into the ReOrder Buffer (ROB) in logical program
order. They are then passed to the scheduler which issues them to
a proper functional unit when their operands and the necessary
resources are available. In this example, the functional units are
clustered into two execution units. Each execution unit contains

a single issue port, which can only issue a single pop to one of
the enclosed functional units every clock cycle. Once issued, the
functional units run independent of each other. When an pop is
executed by a functional unit, the scheduler is notified so that it
can forward the results to any following dependent pops. The pop
then waits in the ROB until it reaches the head where it may be
retired. It is only now that the changes made by the pop become
architecturally visible, giving the illusion—from the architecture’s
point of view—that the instructions are executed in-order.

To further reduce branch related stalls, modern processors imple-
ment speculative execution, which uses various branch predictors
to predict future instructions (those in the predicted execution
paths) and speculatively execute them even before the correct exe-
cution paths are known. If the prediction turns out to be incorrect,
these speculatively executed instructions are squashed and the
processor resumes executing the correct instructions. The instruc-
tions that were executed and later squashed are known as transient
instructions.

2.2 Transient Execution Attacks

Transient execution attacks exploit the side-effects of executing
transient instructions. While transient instructions do not retire—
and do not become architecturally visible—they still can alter mi-
croarchitectural states through which secret can be leaked.

Known transient execution attacks can be largely grouped into
two categories: Spectre and Meltdown types. Spectre type attacks
utilize control and data-flow mis-speculation to force a victim to
access secrets from their own address space and leak them into
the covert channel where they can be accessed by the attacker.
Each Spectre variant [14, 17, 18, 18, 19, 21] is distinguished by
the microarchitectural component that is responsible for causing
the mis-speculation namely—Branch History Buffer (BHB), Branch
Target Buffer (BTB), Memory Disambiguator, and Return Stack
Buffer (RSB).

Meltdown style attacks take advantage of “bugs” in deferred
exception/fault handling in some (mainly Intel) processors. Each
Meltdown variant [1, 15, 17, 20, 29, 34, 40] corresponds to the ex-
ception that caused the fault. Microarchitectural Data Sampling
(MDS) [22, 27, 36] are also considered Meltdown-type attacks. These
attacks target speculative loads that have incorrectly loaded data
from internal buffers—Store Buffer, Load Port, Line Fill Buffer—and
leak the data into covert channels before realizing the fault. The
data that was incorrectly loaded could have come from other SMT
threads on the same processor executing at any privilege level.

2.3 Simultaneous Multithreading (SMT)

To improve hardware utilization, manufacturers often employ a
technique called Simultaneous Multithreading (SMT) [33], where
a single physical core is allowed to execute multiple hardware
threads simultaneously. These hardware threads share much of the
core’s hardware structures, such as functional units, to improve
their utilization. However, the fact that these hardware resources
are shared between the threads mean that they can interfere with
each other, which in turn can be used to create covert/side channels
among the threads in the physical core.



2.4 Contention-based Covert/Side Channels

While most existing transient execution attacks rely on state-
ful covert channels, such as cache based ones (Flush+Reload [42],
Prime+Probe [32]), recently researchers have investigated con-
tention based channels among the hardware threads within a single
physical core [6, 10, 13]. These contention-based channels exploit
the fact that use of the shared hardware resources (ports, functional
units) from one thread will affect the performance of the other
thread that tries to use the same shared hardware resources. As
such, by monitoring the performance variation from one thread,
one can infer information about the other thread.

In this work, we show that contention-based channels can be
created within a single hardware thread without requiring SMT.

3 THREAT MODEL

We assume an attacker who aims to use transient execution
to leak sensitive information from a victim in the same hardware
thread. We assume that the attacker has the ability to control some
non-privileged code that executes logically before and after a tran-
sient execution, which accesses the victim’s secret, in program
order. We assume that the attacker would like to construct code so
that the transient execution transmits the secret over a covert chan-
nel. We assume that stateful covert channels, such as cache based
channels, are not available to the attacker because the platform
either does not provide necessary means to control cache state (e.g.,
CLFLUSH) or implements hardware level defense mechanisms that
prevent stateful covert channels [12, 16, 25, 41].

4 SPECTREREWIND

SpectreRewind is an approach to create and utilize contention-
based covert channels in transient execution attacks within the
same hardware thread. It allows the attacker to both transmit into
and receive from a covert channel before the transient execution
phase of an attack is completed.

In the case of a traditional transient execution attack approach,
the attacker will use a covert channel that causes a lasting state
change in the micro-architecture, and read from the covert channel
from pops that occur logically after the transient execution. Secret
data can be read from the channel by measuring the timing differ-
ences of these pop. Therefore, hardware defenses (e.g., [16, 41]) that
remove the secret from the covert channel after transient execution
will be able to stop these attacks by disrupting the transmission of
the secret.

In the case of the SpectreRewind approach, however, transient
instructions will contend for resources with the pops that come log-
ically before the transient instructions. Because the covert channel
will be read from before transient execution completes, the afore-
mentioned hardware defense mechanisms which attempt to remove
the secret from the covert channel after transient execution finishes
will be ineffective. In our approach, the attacker measures the entire
execution time of the attack to detect the timing differences.

SpectreRewind assumes that older transient pops can contend
with younger pops that began before the transient pops on certain
micro-architectural resources. In the following, we will discuss the
kinds of micro-architectural resources that can be used to create
covert channels in SpectreRewind.

4.1 Not Fully Pipelined Functional Unit

Since we aim to contend with instructions that are logically older
than us, we will not be able to cause port contention or contention
on pipelined functional units as in [6] because younger instructions
cannot delay the older instructions. However, we find that it is
still possible to cause contention on certain functional units that
contain at least one non-pipelined stage.

Figure 2 shows visual examples of this problem. In Figure 2a,
we see an example of an attacker pop trying to cause slowdown
on a victim pop that is trying to use a shared integer multiplier.
Unfortunately, because both the attacker and victim are ready to
issue, the scheduler will choose the older victim, preventing any
contention.

Figure 2b shows a situation where the attacker becomes ready
the cycle before the victim. The attacker is issued into the multiplier,
but still cannot create contention on the victim, as the victim is
issued on the next cycle that it becomes ready, just as if the attacker
was not there.

Finally, Figure 2c shows an attack on a non-pipelined shared
functional unit (stage 1 takes 3 clock cycles to complete). As the
victim is not initially ready, the attacker is scheduled on the unit.
As the unit is not pipelined, the victim cannot be issued on the unit
until the attacker completes, which effects the execution time of
the victim, making a covert channel possible. Thus, for our attack
we will only focus on functional units that have at least one stage
that is not fully pipelined. Note that it is well known that floating
point division is difficult to pipeline because for division each step
depends on the previous step [24]. In the following, we will develop
a floating point division unit based covert channel.

5 FLOATING POINT DIVISION UNIT COVERT
CHANNEL

In this section, we utilize our SpectreRewind approach to create a
covert channel on real commodity hardware that can transmit data
from transient execution without using stateful covert channels, or
SMT co-scheduled processes.

Our covert channel utilizes contention on a non-pipelined func-
tional unit, namely the floating point division unit (see Figure 1),
to transmit data from transient instructions to non-transient in-
structions, which will retire and become architecturally visible. The
floating point division unit was chosen as it is not fully pipelined
in all Intel, AMD, and ARM microarchitectures we tested. Table 1
shows the tested microarchitectures and their latency (Column
4) and throughput (Column 5) characteristics of the DIVSD (for
x86-64 [2]) !, and FDIV (for ARM [4, 5]) instructions.

Note that in all tested x86-64 microarchitectures, the throughput
of the DIVSD instruction is 4 or 8 cycles, meaning that while an
DIVSD instruction is being executed, a pending DIVSD instruction
has to wait 4 or 8 cycles before entering the floating point division
unit. This delay makes the floating point division unit an ideal
candidate for us to create a covert channel.

! As defined in [2], latency refers to the clock cycles needed from the time the op is
issued to the time the result become available to dependent pLops, while throughput
refers to the clock cycles needed from the time the pLop is issued until to the time the
functional unit becomes available again.
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Figure 2: Multiple attempts by attacker to delay the execu-
tion of the victim, causing measurable timing differences.
If the attacker is younger than the victim, an age-ordered
scheduler will prevent most contention.

1 double recv, div;
2 double send1, send2, send3, send4;
3 int message; // secret
4
5 start = rdtscp(); // start timer
6
7 // begin receiver (12 dependent FP divisions)
8 recv /= div;
9 recv /= div;
10
11 recv /= div;
12 // end of receiver
13
14 if (recv == 1) { // begin speculative execution
15 m_bit = bit(message, k); // access secret
16 if (m_bit) { // secret dependent branch
17 // begin sender (independent FP divisions)
18 for (int x = 0; x < 100; x++) {
19 sendl /= div;
20 send2 /= div;
21 send3 /= div;
22 send4 /= div;
23 }
24 // end of sender
25 }
26 }
27
28 end = rdtscp(); // end timer

Figure 3: Pseudo code of our floating point division unit con-
tention based covert channel in a Spectre like transient exe-
cution attack.

Figure 3 shows the code used to form the ideal covert channel.
(1) A timer is started (Line 5); (2) A chain of dependent floating
point division instructions begins execution (Line 8). Because the
instructions are dependent, each instruction suffers the full round-
trip latency of the floating point division unit (see Table 1). This
chain of division instructions acts as a receiver; (3) The result of
the receiver instruction chain is compared in the if statement (Line
14). Note that we train the if statement to be true so that the body
will execute speculatively while the result of the receiver chain is
being calculated; (4) A single bit of the (secret) message to transmit
is accessed (Line 15) and the inner if statement branches depending
on the value of the secret bit (Line 16); (5) The inner if statement
is trained to be false. Thus, if the secret bit was ‘1’, the processor
backtracks and begins to speculatively execute a set of independent
floating point division instructions (Line 18-23), which act as a
sender. The “sender” instructions are independent with each other
so as to be issued concurrently and maximally contend with the
“receiver” instructions on the floating point division unit of the
processor. (6) When the “receiver” instructions are completed, the
processor will realize the mis-speculation (recv in Line 14 was 0)
and squash the speculative instructions from the “sender”. We then
stop the timer (Line 28) and measure the time difference.

Note that if the secret bit was ‘1’, the observed time difference
will be longer, due to the contention in the floating point division
unit with the mis-speculated “sender” instructions, compared to



the case when the secret bit was ‘0’ where there was no contention.
This secret-dependent timing difference creates a covert channel.

5.1 Covert Channel Properties

We experimentally evaluate the characteristics the covert chan-
nel on a number of commodity Intel, AMD, and ARM systems, as
listed in Table 1.

Each system runs Linux (Ubuntu 18.04 or 16.04). For x86 plat-
forms from Intel and AMD, we use rdtscp instructions for cycle ac-
curate timing measurements. For ARM, we use an additional thread
based software counter instead due to the architectural limitation.
We repeatedly send 0 and 1 values over the covert channel, each
for 1,000,000 times, and measure the timing results. To minimize
noise, we use Linux’s performance governor disable Turbo-boost
(for X86 platforms) to improve reliability of the measurements.

Figure 4 shows the results. The X-axis shows the number of
cycles taken to transmit, while the Y axis displays the probability
a measurement has to take that many cycles. Note first that on all
tested platforms, we see clear timing differences between ‘0’ and
‘1’ values. As explained in Section 4.1, not fully pipelined floating
point division units in these platforms allow the mis-speculated
division instructions to contend with the logically prior “receiver”
instructions, resulting in clearly measurable timing differences.

Another interesting observation is that the two AMD processors
and the ARM Cortex-A57 show discreet timing characteristics—
large proportion of the samples are concentrated on a few small
measured cycles—whereas Intel processors show more varied tim-
ing behaviors, especially the Skylake processors. These differences
are likely due to the way the floating point division unit is imple-
mented in each of these vendors.

In addition to DIVSD, we also evaluated other instructions that
utilize the same floating point division unit to determine if they
could be used for creating covert channels as well. To this end,
we evaluated division and square root instructions from the AVX
(VDIVSD, VDIVSS, VSQRTSD, VSQRTSS), SSE (SQRTSS, DIVSS), and
SSE2 (SQRTSD) instructions on both the Intel i5-6500 and AMD
Ryzen 5 2600 machines, and found that they all can be used to create
covert channels. Finally, we also evaluated floating point multiplica-
tion instructions but were not able to observe any noticeable timing
difference, suggesting that the floating point multiplication units
in these platforms are well pipelined, and thus cannot be used to
create covert channels.

5.2 Performance Analysis

Next, we analyze the performance of the covert channel in terms
of transfer rate and error rate. The measured transfer rates of our
tested platforms are calculated by simply dividing the total bits sent
(1 million bits of 0 and 1 million bits of 1) with the time it took to
send them. The error rate of each system is calculated as follows.
We first sort each million timing samples of 0 and 1. We then find 99
percentile value of the ‘0’ samples and 1 percentile value of the ‘0’
samples. If the former (99 percentile of ‘0’ samples) is smaller than
the latter (1 percentile of ‘1’ samples), we pick the average of the
two value as the threshold to determine 0 or 1. If the 99 percentile
of 0 is bigger than the 1 percentile of 1, we set the average of the
median values of 0 and 1 samples as the threshold value. We then

apply the threshold against the collected samples to determine if it
correctly classifies the sample against its known correct value.

The results are shown in Table 1 (see the ‘Transfer Rate’ and
‘Error Rate’ columns). First, notice that the proposed covert channel
supports very high transfer rates on all tested platforms, ranging
from 63 to 105 KB/s. Furthermore, the error rates are also very low,
especially on Intel processors, as we observe less than 0.5% error
rates. AMD processors show higher error rates, of up to 5.5% on
low end Ryzen3 APU.

5.3 Sensitivity Analysis

An interesting aspect of our covert channel is that the size (dura-
tion) of the speculation window can be controlled by adjusting the
number of dependent division instructions used in the “receiver”
part of the covert channel—i.e., Line 8-11 in Figure 3. This is because
speculatively executed sender instructions are squashed after the
receiver instruction change is completed. As such, the longer the
receiver instruction chain is, the longer the sender instructions
can contend on the floating point division unit. To understand the
effect of the length of the receiver to the effectiveness of the covert
channel, we measure the characteristics of the covert channel as a
function of the number divisions in the receiver chain.

Table 2 shows the results. The first column shows the number
of division instructions in the receiver chain. The second and third
columns show the median cycles observed when sending ‘0’ and ‘1’
values over the covert channel, respectively. The fourth column is
the cycle difference between 0 and 1 samples. Finally, the fifth and
the last columns show the transfer and error rates of the channel.

Note first that the transfer rate is inversely proportional to the
number of divisions in the receiver, which is expected as the more
divisions are used, the longer time is needed to execute them before
squashing the speculation. As such, from the transfer rate perspec-
tive, using a smaller number of divisions in the receiver may be
desirable. However, when the number of divisions is too small, as
in the case of 3 divisions, the covert channel becomes ineffective as
the error rate is too high. This is because the speculation window is
not long enough for the sender instructions to be able to effectively
contend with the receiver instructions on the floating point division
unit.

The error rate dramatically decreases as we increase the number
of divisions in the receiver. At 9 or more divisions, the covert chan-
nel shows very low error rate while showing gradually decreasing
transfer rates. For this platform, we can see using 12 divisions in
the receiver chain is a “sweet spot” in the sense that it offers high
enough performance and low noise. While different platforms may
have different sweet spots, we nevertheless used the same 12 di-
visions in all platforms, unless noted otherwise, as it performed
reasonably well in all of them.

6 SPECTREREWIND IN JAVASCRIPT

In this section, we show that SpecreRewind attack can work in
a JavaScript sandbox environment.

Similarly to the original Spectre attack PoC in JavaScript [18],
we developed a PoC that implements our floating point division
unit covert channel in JavaScript, and successfully executing it
on Google Chrome version 62.0.3202.75, which allows a website
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CPU ISA Microarch. Latency | Throughput || Transfer Rate | Error Rate
(cycles) (cycles) (KB/s) (%)
Intel Core 15-8250U x86-64 | KabylakeR || 13-15 4 53.1 0.02
Intel Core 15-6500 x86-64 | Skylake 13-15 4 115.1 0.01
Intel Xeon E5-2658 v3 | x86-64 | Haswell 10-20 8 64.1 0.01
Intel Core 15-3340M x86-64 | Ivybridge 10-20 8 75.6 0.16
AMD Ryzen 3 2200G | x86-64 | Zen 8-13 4 83.1 5.50
AMD Ryzen 5 2600 x86-64 | Zen+ 8-13 4 84.8 3.30
NVIDIA Jetson Nano | ARMvS8 | Cortex A57 7-32 5-30 87.7 0.02
Raspberry Pi 4 ARMvS8 | Cortex A72 6-18 4-16 80.7 0.16

Table 1: Evaluation platforms; latency and throughput for DIVSD (for x86-64 [2]) and FDIV (for ARM [4, 5]) instructions; mea-
sured performance (transfer and error rates) of each platform’s floating point division unit covert channel.

sdivs ‘0’ ‘1 Diff. | Transfer | Error
(cycles) | (cycles) | (cycles) | (KB/s) (%)
3 169 169 0 155.0 49.98
6 204 212 8 140.6 0.62
9 242 258 16 126.2 0.03
12 276 299 23 115.1 0.01
15 312 345 33 105.0 0.01
24 418 472 54 84.7 0.01
48 705 814 109 55.5 0.01
72 991 1107 116 41.3 0.01

Table 2: Sensitivity to #of divisions (DIVSD) used in the “re-
ceiver" part of the covert channel on Intel i5-6500.
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Figure 5: Timing characteristics of division floating point
unit covert channel execution in Google Chrome JavaScript
sandbox

to read private memory from the process in which it runs. For a
high resolution timer, as in [18], we also followed the approach
described by Schwarz et al. [28], which utilize Web Workers along
with SharedArrayBuffer. This allows for the creation of a separate
thread, that continuously increments a value in shared memory
that the original thread can use to time code execution. The main
difference in our PoC is that we do not rely on any cache state
manipulation techniques unlike Kocher et al. [18].

Figure 6 shows a snippet of the final code along with the gen-
erated assembly, produced by the JavaScript JIT compiler, of the
JavaScript version side-by-side with the natively compiled C ver-
sion’s assembly code. While the number of instructions the JavaScript
version is bigger than that of the natively compiled version, we find
that the majority of these extra instructions happen in the section of
code that is responsible for accessing the message and branching on
bit values. Moreover, the all important division operations are com-
piled neatly down to a few floating point division instructions in
both versions. We find that the resolution of the SharedArrayBuffer
based timer is, though not as good as the native timers, sufficient
for data transmission. We have however increased the number of
receiver code divisions from 12 to 24 to improve signal over the
lower resolution timer. Figure 5 shows the probability distribution
of the transmission of the JavaScript based covert channel, which
show distinguishable timing differences depending on the value of
the secret bit it accesses during the transient execution.

Note that our current JavaScript PoC may not work in recent
Chrome browsers which implement Spectre prevention mecha-
nisms because they also appear to block speculative execution
of the secret dependent division instructions needed by Spectr-
eRewind. Circumventing the Spectre defense mechanisms in recent
versions of JavaScript sandbox environments is future work.

7 DISCUSSION

In this section, we discuss the benefits and shortcomings of
SpectreRewind, and its mitigation options.

7.1 Benefits and Limitations

SpectreRewind utilizes a new type of contention-based covert
channel, which is available in a wide range of micro-architectures
while providing high bandwidth and low noise characteristics. As
such, we believe that our covert channel can be used as an alter-
native covert channel to cache-based ones for transient execution
attacks. Our covert channel may be preferable to Flush+Reload in
environments where instructions to flush cache lines (e.g. CLFLUSH
in x86) are not available (e.g., most ARM platforms, browser sand-
boxes). We are currently developing a set of PoCs that demonstrate
the potential use of the new covert channels in a subset of Spectre,
Meltdown, and MDS attacks, which are mounted from the same
hardware thread. For example, in our preliminary experiment, we



JIT Compiled

JavaScript
1 // receiver dependent FP divisions
2 probe /= div;
3 probe /= div;
4
5
6 // begin speculative execution /
7 if( 1.0 == probe )
8 {
9
10 // branch on message bit value
11 if ( my_message[j] & (1 << my_bit_nol[j]) )
12 {
13
14 // sender independent FP divisions
15 sendl /= div;
16 send2 /= div;
17 send3 /= div;
18 send4 /= div;
19
20 }
21 }
22 }

vdivsd %xmm1,%xmm0,%xmm0
vmovapd %xmm0,%xmm(
vdivsd %oxmm1,%xmm0, %xmm0
vmovapd F%exmm0,%xmm0

Native Compiled

—

divsd %xmm0,%xmm4
divsd %xmm0,%xmm4

movabs $0x3f0000000000000,%r10
vmovq %rl10,%xmm2
vucomisd %xmm0,%xmm2
jp 0x26e91012b7ae

Jjne 0x26e91012bTae

movabs $0x31a5b890181,%r9 ; access my_message
cmp %orl 1, —0x1(%r9)

Jne 0x26e9f012d485

mov Oxf(%r9),%r8

mov 0x1b(%r9),%r9d

cmp %r9d, %ecx

Jjae 0x26¢91012d48a

«.. ; FEpeat same 7 instructions for my_bit_no[j]
mov 0x13(%rl 1, %rax.8),%r9d
mov %r9,%rex

mov $0x1,%r9d

shil %cl,%r9d

mov 0x 13(%r8, %rax,8),%ecx ; access message
mov $0x1 %rl Id

test %r9d, %ecx

Jje 0x26¢91012b7ae ; branch on value

cmp Oxcel(%r13) %rsp

Jjbe 0x26e91012ch1a

movabs $0x4206fee0c¢2180000,%r10
vmovq %rl0,%xmm0

vdivsd %xmml,%xmm0,%xmm0 ; start sen
vmovapd %xmm0,%xmm0

movabs $0x423¢be9829¢0000,%r10
vmovq %rl0,5%xmm2

vdivsd %xmm1,%xmm2,%xmm2

movsd (%rdx),%xmm0

ucomisd Oxac225(%rip), % xmmd
jp401947

jne 401947

mov 0x10(%rdi), %rax
movsbl (%rax),%ca

bt Goesi, %eax

Jac 401947

mov S0x6d8 128, %rax
mov S0x6d8150,%rsi
movsd (%rax),%xmm8
mov S0x6d8 138, %rax
movsd (%rax),%xmm7
divsd %xmm8,%xmm2
divsd %xmm7,%xmml

Figure 6: Excerpt from JavaScript covert channel code (Left), the assembly the JIT compiler created (Center), and the native

generated assembly (Right)

were able to modify a publicly available Meltdown PoC to utilize
SpectreRewind’s covert channel.

One major downside of SpectreRewind is that it requires sender
and receiver instructions be present simultaneously at the same
hardware thread, which restricts its use in cross-process/core at-
tack scenarios (e.g., [18]). Also, finding an exploitable gadget, which
includes secret dependent division instructions, may be challeng-
ing to find in real application binaries. In addition, the sender and
receiver instructions must be executed from the same protection
domain—either both in kernel or both in user. This is because the
CPU privilege mode change involves pipeline flush. Therefore, initi-
ating the receiver instructions at the user-level while executing the
sender instructions at the kernel (e.g., a system call) may not be fea-
sible. Note, however, that speculative access to a memory location
in a different protection domain (e.g., access to a kernel address
in Meltdown-type attacks) is still possible because the involved
instructions are still executed at the same protection domain.

7.2 Mitigation Strategies

As SpectreRewind requires out-of-order contention on not fully
pipelined functional units in the processor, one mitigation strategy
is to redesign the functional units to be fully pipelined. But such a re-
design may not always be possible. Another alternative is to adopt
a strict in-order scheduling policy such that younger instructions
(sender) can never be issued before all older instructions are issued
first, though it would incur high performance cost.

An effective mitigation strategy is to delay or prevent the execu-
tion of secret dependent instructions during the transient execution
phase. SpectreGuard [11] is an example of such an approach, where

secret data is marked as secret in the application process’s page
table and then is disallowed from being forwarded to dependent
instructions until it reaches a point where it can be logically con-
sidered safe to forward. ConTExXT [26] uses a similar approach,
marking data as secret in the page table and delaying propagation
of the value of the secret. Intel and NVIDIA also proposed similar
mitigation solutions [7, 30]. NDA [39] and STT [44] are software
transparent hardware solutions that selectively allow some (safe)
instructions to be executed speculatively while preventing other
(unsafe) instructions. All these techniques that prevent secret de-
pendent speculative execution may mitigate SpectreRewind covert
channels.

8 RELATED WORK

Most known transient execution attacks utilize stateful cache-
based covert channels, which exploit the timing differences in
accessing cached (hit) and non-cached (miss) memory addresses.
Cache-based covert channels are powerful because secret depen-
dent state changes in a cache can be long lasting (persistent), making
secret recovery relatively easier for an attacker. Also, they gener-
ally offer high bandwidth and low noise compared to other covert
channels in modern processors. For these reasons, there have been
a flurry of research proposals to protect specifically against cache
based covert channels [12, 16, 25, 41] as a mean to defend against
transient execution attacks. For example, InvisiSpec [41] and Safe-
Spec [16] are both recently proposed hardware solutions that defer
updating microarchitectural states of caches (and TLBs) until such
changes are considered to be safe. Gonzalez et al [12] implemented



such a defense on an actual out-of-order open source RISC-V pro-
cessor core. CleanupSpec [25] lets the microarchitectural changes
from transient instructions occur but later undo those changes after
recognizing mis-speculation. In contrast, SpectreRewind exploits a
contention-based covert channel and thus bypasses all these defense
mechanisms against stateful cache covert channels.

Contention-based covert channels are well studied in the context
of Simultaneous multi-threading (SMT) processors. Wang and Lee
showed various ways to create covert/side channels in SMT proces-
sors [38] and discussed possible mitigations. Aclicmez and Seifert
used the contention on the shared integer multiplication unit as
a side channel [3] to break a cryptographic function in OpenSSL
running concurrently on a separate hardware thread on the same
core. CacheBleed [43] exploited L1 cache bank contention as a
covert channel while MemJam [23] instead utilized false read-after-
write dependencies to create a covert channel. Both CacheBleed
and MemJam applied their respective covert channels to break
constant time OpenSSL implementations. Covert Shotgun [10] sys-
tematically explored possible contention-based covert channels by
exhaustively executing instructions on different SMT threads of
the same physical core. PortSmash [8] utilized port contention to
create a microarchitectural side-channel to leak the secret key from
a vulnerable version of OpenSSL. SmotherSpectre [6] utilized a
port contention based side channel to mount a transient execu-
tion attack, specifically the Branch Target Injection attack (BTI,
a.k.a., Spectre variant 2 [18]). Using BTI allowed this attack to run
attacker code to transiently access secret in the victim and then
to execute secret dependent instructions, which can be monitored
by the attacker’s process on a different SMT thread of the same
core. ABSynth [13] goes a step further by automatically discover-
ing the best set resources, not just execution ports in most prior
works, that can leak information with a blackbox analysis. SMT-
cop [31] prevent these SMT based covert channels by providing
spatial and temporal partitioning of the SMT resources. SMT based
covert channels can also be prevented by simply disabling SMT.
Our work differs from these prior works as we focus on contention
based covert channels in the non-SMT context, specifically from
the single hardware thread context, and in the context of transient
execution attacks.

9 CONCLUSION AND FUTURE WORK

In this paper, we presented SpectreRewind, a new approach to
create and exploit contention-based covert channels in transient
execution attacks from a single hardware thread. We identified that
speculatively executed young instructions can delay logically older
non-speculative (bound-to-retire) instructions due to contention on
non-pipelined functional units of modern out-of-order processors.
Specifically, we showed that contention on non-pipelined floating
point division units in commodity Intel, AMD, and ARM proces-
sors can create high-bandwidth, low-noise covert channels in same
thread transient execution attacks. We also showed that the covert
channel can be used in the JavaScript sandbox of a Chrome browser.
As future work, we plan to develop end-to-end transient execution
attacks leveraging the covert channel. Also, we will further inves-
tigate if other microarchitectural structures can be used to create
contention based covert channels in transient execution attacks.
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