
Noname manuscript No.
(will be inserted by the editor)

A Framework for Leaking Secrets to Past Instructions

Jacob Fustos · Michael Bechtel · Heechul Yun

Received: date / Accepted: date

Abstract Transient execution attacks use microarchitec-
tural covert channels to leak secrets that should not have
been accessible during logical program execution. Com-
monly used micro-architectural covert channels are those
that leave lasting footprints in the micro-architectural state,
for example, a cache state change, from which the secret is
recovered after the transient execution is completed. In this
paper, we present SpectreRewind, a new approach to create
and exploit contention-based covert channels for transient
execution attacks. In our approach, a covert channel is
established by issuing the necessary instructions logically
before the transiently executed victim code. Unlike prior
contention based covert channels, which require simulta-
neous multi-threading (SMT), SpectreRewind works on
a single hardware thread and does not require SMT. We
show that contention on the floating point division unit on
commodity out-of-order processors can be used to create a
high-performance (∼100 KB/s), low-noise covert channel
for transient execution attacks instead of commonly used
flush+reload based cache covert channels. We also show
that the proposed covert channel works in the JavaScript
sandbox environment of a Chrome browser and can be used
in a Meltdown attack.

Keywords Spectre · Micro-architectural Attack · Covert-
channel

1 Introduction

Modern out-of-order microprocessors support specu-
lative execution to improve performance. In speculative
execution, instructions can be executed speculatively before

Jacob Fustos · Michael Bechtel · Heechul Yun
University of Kansas

knowing whether they are in the correct program execution
path. If the speculation was wrong, the instructions that
were executed incorrectly—known as transient instruc-
tions [20]—are squashed and the processor then simply
retries to fetch and execute the correct instruction stream.
Unfortunately, these transient instructions can potentially
bypass both software and hardware defenses to access
secret data. The disclosure of Spectre [20], Meltdown [22]
and many other subsequently discovered transient execu-
tion attacks [19,23,21,16,1,17,33,38,42,28,24,31,10,29,
39] have shown the danger of these transient instructions.
Namely, the secrets they have access to can be encoded
and transmitted into microarchitectural covert channels
and subsequently recovered by normal, non-speculative
instructions, thus allowing the secrets to be visible to the
attacker.

All known transient execution attacks share the same
three basic steps: (1) the attacker initiates speculative ex-
ecution where the secret is read improperly from memory
or registers; (2) the secret dependent transient instructions
then encode and transmit the secret to a micro-architectural
covert channel; (3) finally, the secret is recovered from
the covert channel by normal (non-transient) receiver in-
structions. Commonly used covert channels, such as cache,
are stateful as they leave lasting footprints in the micro-
architectural state, from which the secret is recovered
after the transient execution is completed. Many hardware
defense proposals aim to prevent such stateful covert chan-
nels either by hiding the changes into additional hardware
buffers [18,43,14] or by reverting them when the transient
instructions are squashed [27]. Such a mitigation strategy
is attractive from a performance standpoint, as the transient
instructions are allowed to execute normally, retaining many
of the performance benefits of speculative execution.

These types of defenses are effective at blocking tran-
sient execution attacks that utilize stateful covert channels.

Unfortunately, these techniques cannot be used to block at-
tacks that both transmit into and read from covert channels
before transient instructions have been squashed. Smother-
Spectre [7] is the first to demonstrate such in the context
of a Spectre-based attack. By generating contention on is-
sue ports within simultaneous multi-threading (SMT) pro-
cessors, SmotherSpectre is able to create a covert channel
that can transmit a secret between the SMT threads. Such
contention cannot be buffered or reverted, as instructions
have already waited to use the issue ports, affecting their
execution time.

In this paper, we present SpectreRewind, a new ap-
proach to create and utilize contention-based covert chan-
nels in transient execution attacks. Like SmotherSpectre,
SpectreRewind is a contention based covert channel and
allows the attacker to both transmit and receive secret data
before transient execution has completed, thus bypassing
most defense mechanisms that attempt to revert or hide
micro-architectural changes caused by the attack. Unlike
SmotherSpectre, however, SpectreRewind is executed from
a single hardware thread and does not require SMT. While
traditional transient execution attacks locate the instructions
that will read from the covert channel logically after the
instruction that triggers the transient execution (e.g., a
branch), SpectreRewind takes the opposite approach and
locates these instructions logically before the triggering
instruction. This structure allows the transmitting and re-
ceiving instructions to execute concurrently on a modern
out-of-order core and communicate the secret even before
the transient execution completes, thus evading stateful
defenses. However, the fact that the sender and the receiver
must execute on the same hardware thread also limits its use
in cross-core attack scenarios.

We identify that non-pipelined functional units can
be exploited to create SpectreRewind covert channels. In
particular, we show that contention on the floating point
division unit in commodity Intel, AMD, and ARM pro-
cessors can create high bandwidth (∼100KB/s), low-noise
(<0.01%) covert channels that are comparable to com-
monly used cache-based covert channels. We also show the
feasibility of our covert channel within a Chrome browser’s
JavaScript sandbox. Lastly, we demonstrate a complete
cross-domain Meltdown attack, which is modified to use a
SpectreRewind covert channel.

In summary, we make the following contributions:

– We find that execution of speculative instructions
can cause secret dependent delay to logically prior
non-speculative (bound-to-retire) instructions due to
resource contention between them and that can be
exploited to create a new class of covert channels. To
the best of our knowledge, we are the first to make the
discovery.

– We present a covert channel that exploits contention on
non-pipelined functional unit, namely a floating point di-
vision unit, between the speculative and non-speculative
instructions 1. We experimentally evaluate the perfor-
mance of the covert channel on a number of commodity
out-of-order processors from Intel, AMD, and ARM.

– We further demonstrate the feasibility of creating the
covert channel within JavaScript sandbox, and success-
ful application of the covert channel in a cross-domain
transient execution attack, namely the Meltdown attack.

Compared to our prior workshop version [12], this jour-
nal extension further investigates the feasibility and effec-
tiveness of the proposed approach by (1) exploring other
micro-architectural resources that can also be used to leak
secret to earlier instructions; (2) experimentally validating
the existence of the SpectreRewind covert channel on more
recent hardware architectures, (3) improving performance of
the channel on AMD processors, (4) presenting a complete
end-to-end Meltdown attack using our covert channel, and
(5) comparing our work with recent related work.

The remainder of the paper is organized as follows.
Section 2 describes the necessary background. Section 3 de-
fines the threat model. Section 4 introduces SpectreRewind
and Section 5 presents a concrete SpectreRewind covert
channel, which exploit contention in the floating-point
division unit in a out-of-order processor pipeline. Section 6
demonstrates the feasibility of a SpectreRewind channel in
a JavaScript sandbox and Section 7 shows its application
in a cross-domain attack. We discuss limitations of our
approach in Section 8. We review related work in Section 9
and conclude in Section 10.

2 Background

In this section, we provide necessary background on out-
of-order cores, transient execution attacks, and simultaneous
multithreading (SMT) hardware.

2.1 Out-of-order Processors

Modern high performance microprocessors implement
out-of-order execution to maximize instruction level paral-
lelism and performance.

Figure 1 shows a simplified example of an out-of-order
processor. In this example, instructions are translated into
micro-operations (µops) and placed into the ReOrder Buffer
(ROB) in logical program order. They are then passed to
the scheduler which issues them to a proper functional unit

1 Our PoC code is available at http://github.com/CSL-KU/

SpectreRewind-POC

2

http://github.com/CSL-KU/SpectreRewind-POC
http://github.com/CSL-KU/SpectreRewind-POC

µop6

Port 1

Port 0

Scheduler

µop

µop

Floating Point Divider

Integer Divider

Integer ALU

Integer Multiplier

Integer ALUReOrder Buffer

µop0

µop1

µop2

µop3

µop4

µop5

µop6

µop1

µop3

µop5

µop0

µop6µop2

µop4

Fig. 1: Simplified out-of-order processor design. The Re-
Order Buffer holds and retires µops in logical program or-
der, while µops are issued to the execution units in out-of-
order.

when their operands and the necessary resources are avail-
able. In this example, the functional units are clustered into
two execution units. Each execution unit contains a single
issue port, which can only issue a single µop to one of the
enclosed functional units every clock cycle. Once issued, the
functional units run independent of each other. When an µop
is executed by a functional unit, the scheduler is notified
so that it can forward the results to any following depen-
dent µops. The µop then waits in the ROB until it reaches the
head where it may be retired. It is only now that the changes
made by the µop become architecturally visible, giving the
illusion—from the architecture’s point of view—that the in-
structions are executed in-order.

To further reduce branch related stalls, modern proces-
sors implement speculative execution, which uses various
branch predictors to predict future instructions (those in the
predicted execution paths) and speculatively execute them
even before the correct execution paths are known. If the
prediction turns out to be incorrect, these speculatively ex-
ecuted instructions are squashed and the processor resumes
executing the correct instructions. The instructions that were
executed and later squashed are known as transient instruc-
tions.

2.2 Transient Execution Attacks

Transient execution attacks exploit the side-effects of ex-
ecuting transient instructions. While transient instructions
do not retire—and do not become architecturally visible—
they still can alter microarchitectural states through which
secret can be leaked.

Known transient execution attacks can be largely
grouped into two categories: Spectre and Meltdown types.
Spectre type attacks utilize control and data-flow mis-
speculation to force a victim to access secrets from their
own address space and leak them into the covert channel

where they can be accessed by the attacker. Each Spectre
variant [20,19,20,16,23,21] is distinguished by the mi-
croarchitectural component that is responsible for causing
the mis-speculation namely—Branch History Buffer (BHB),
Branch Target Buffer (BTB), Memory Disambiguator, and
Return Stack Buffer (RSB).

Meltdown style attacks take advantage of “bugs” in
deferred exception/fault handling in some (mainly Intel)
processors. Each Meltdown variant [19,22,1,17,33,38,
42] corresponds to the exception that caused the fault.
Micro-architectural Data Sampling (MDS) [24,28,31]
are also considered Meltdown-type attacks. These attacks
target speculative loads that have incorrectly loaded data
from internal buffers—Store Buffer, Load Port, Line Fill
Buffer—and leak the data into covert channels before real-
izing the fault. The data that was incorrectly loaded could
have come from other SMT threads on the same processor
executing at any privilege level.

2.3 Simultaneous Multithreading (SMT)

To improve hardware utilization, manufacturers often
employ a technique called Simultaneous Multithreading
(SMT) [37], where a single physical core is allowed to
execute multiple hardware threads simultaneously. These
hardware threads share much of the core’s hardware struc-
tures, such as functional units, to improve their utilization.
However, the fact that these hardware resources are shared
between the threads mean that they can interfere with
each other, which in turn can be used to create covert/side
channels among the threads in the physical core.

2.4 Contention-based Covert/Side Channels

While most existing transient execution attacks rely
on stateful covert channels, such as cache based ones
(Flush+Reload [44], Prime+Probe [36]), recently re-
searchers have investigated contention based channels
among the hardware threads within a single physical
core [11,7,15]. These contention-based channels exploit the
fact that use of the shared hardware resources (ports, func-
tional units) from one thread will affect the performance of
the other thread that tries to use the same shared hardware
resources. As such, by monitoring the performance varia-
tion from one thread, one can infer information about the
other thread.

In this work, we show that contention-based channels
can be created within a single hardware thread without re-
quiring SMT.

3

3 Threat Model

We assume an attacker who aims to use transient ex-
ecution to leak sensitive information from a victim in the
same hardware thread. We assume that the attacker has the
ability to control some non-privileged code that executes
logically before and after a transient execution, which ac-
cesses the victim’s secret, in program order. We assume
that the attacker would like to construct code so that the
transient execution transmits the secret over a covert chan-
nel. We assume that stateful covert channels, such as cache
based channels, are not available to the attacker because
the platform either does not provide necessary means to
control cache state (e.g., CLFLUSH) or implements hard-
ware level defense mechanisms that prevent stateful covert
channels [14,18,43,27].

4 SpectreRewind

SpectreRewind is an approach to create and utilize
contention-based covert channels in transient execution
attacks within the same hardware thread. It allows the
attacker to both transmit into and receive from a covert
channel before the transient execution phase of an attack is
completed.

contention

Sending ‘0’

Sending ‘1’

Speculative
instruction stream

Non-speculative
instruction stream

time

No contention

Fig. 2: The SpectreRewind approach: exploit contention be-
tween secret-dependent speculative instructions and non-
speculative instructions to create a covert channel.

In the case of a traditional transient execution attack ap-
proach, the attacker will use a covert channel that causes a
lasting state change in the micro-architecture, and read from
the covert channel from µops that occur logically after the
transient execution. Secret data can be read from the chan-
nel by measuring the timing differences of these µop. There-
fore, hardware defenses (e.g., [43,18]) that remove the se-
cret from the covert channel after transient execution will be

able to stop these attacks by disrupting the transmission of
the secret.

In the case of the SpectreRewind approach, how-
ever, transient instructions will contend for resources with
the µops that come logically before the transient instruc-
tions. Because the covert channel will be read from before
transient execution completes, the aforementioned hardware
defense mechanisms which attempt to remove the secret
from the covert channel after transient execution finishes
will be ineffective. In our approach, the attacker measures
the entire execution time of the attack to detect the timing
differences. Figure 2 illustrates the basic concept of the
SpectreRewind approach.

SpectreRewind assumes that older transient µops can
contend with younger µops that began before the tran-
sient µops on certain micro-architectural resources. In the
following, we will discuss the kinds of micro-architectural
resources that can be used to create covert channels in
SpectreRewind.

4.1 Non-Pipelined Functional Unit

Since we aim to contend with instructions that are log-
ically older than us, we will not be able to cause port con-
tention or contention on pipelined functional units as in [7]
because younger instructions cannot delay the older instruc-
tions. However, we find that it is still possible to cause con-
tention on certain functional units that contain at least one
non-pipelined stage.

Figure 3a shows a situation where the attacker becomes
ready the cycle before the victim on a pipelined functional
unit. The attacker is issued into the multiplier, but still can-
not create contention on the victim, as the victim is issued
on the next cycle that it becomes ready, just as if the attacker
was not there.

Figure 3b, on the other hand, shows the same situation
but on a non-pipelined functional unit in which the first stage
takes 3 clock cycles to complete. As the victim is not ini-
tially ready, the attacker is scheduled on the unit. As the unit
is not pipelined, the victim cannot be issued on the unit un-
til the attacker completes, which effects the execution time
of the victim, making a covert channel possible. Thus, for
our attack we will only focus on functional units that have
at least one stage that is not fully pipelined.

Note that it is well known that floating point division is
difficult to pipeline because for division each step depends
on the previous step [26]. In Section 5, we will develop a
floating point division unit based covert channel.

4

Port 1

Scheduler

Ready

Scheduler
Integer Multiplier

Stage 1 Stage 2 Stage 3

WaitingReady

Integer Multiplier

Stage 1 Stage 2 Stage 3

Port 1

Scheduler
Integer Multiplier

Stage 1 Stage 2 Stage 3

Port 1

(a) Waiting victim, Pipelined functional unit

Scheduler

Scheduler

Scheduler
Floating Point Divider

Stage 1

WaitingReady

Ready

Ready

Floating Point Divider

Stage 1

Floating Point Divider

Stage 1

Port 1

Port 1

Port 1

(b) Waiting victim, Not fully pipelined functional unit

Fig. 3: Multiple attempts by attacker to delay the execution
of the victim, causing measurable timing differences. If the
attacker is younger than the victim, an age-ordered sched-
uler will prevent most contention.

4.2 Other Micro-architectural Resources

While we mainly focus on non-pipelined functional unit
in this work, the SpectreRewind approach can be applied to
other micro-architectural resources.

Recently, Behnia et al., also observe that mis-speculated
young instructions can delay non-speculative old instruc-
tions in out-of-order processors and showed miss-status-
holding-registers (MSHRs) and reservation station (RS) also
can be used to create covert-channels [6]. Note, however,
that any micro-architectural resource that can impact the
execution of older instructions can be used to create covert
channels. Furthermore, it is even possible that younger,
secret dependent speculative instructions can make older
non-speculative instructions run faster.

Consider, for example, a set of non-speculative and data
dependent instructions that perform linked-list traversal,
which may miss the cache at every list item access. Due
to the inherent data dependency, the hardware prefetcher
might not be able to prefetch necessary data in the list on
its own. In this situation, if secret dependent speculative
instructions are executed concurrently, they can act as a
“prefetcher” for the data that will be needed by the non-
speculative instructions, thereby reducing their execution
time. This “prefetching” by speculative instructions can
be performed efficiently because the speculative instruc-
tions can issue multiple memory requests simultaneously,
while the non-speculative ones, the linked-list traversal,
can only generates one memory access at a time. This
creates a covert-channel because the attacker can measure
the execution time of the linked-list traversal, which will
take longer if the secret was zero (no “prefetching”), or
shorter if the secret was one (due to “prefetching”). In other
words, the secret is transferred to the receiver in the form
of execution time difference without leaving any trace. As
such, we would like to stress that it is not necessary to
delay the older instructions to create a covert channel, but
any measurable execution timing changes—be it faster or
slower—by secret-dependent speculative instructions can
be used to create a covert channel.

5 Floating Point Division Unit Covert Channel

In this section, we utilize our SpectreRewind approach
to create a covert channel on real commodity hardware that
can transmit data from transient execution without using
stateful covert channels, or SMT co-scheduled processes.

Our covert channel utilizes contention on a non-
pipelined functional unit, namely the floating point division
unit (see Figure 1), to transmit data from transient instruc-
tions to non-transient instructions, which will retire and
become architecturally visible. The floating point division
unit was chosen as it is not fully pipelined in all Intel, AMD,
and ARM microarchitectures we tested. Table 1 shows the
tested microarchitectures and their latency (Column 4) and
throughput (Column 5) characteristics of the DIVSD (for
x86-64 [2]) 2 , and FDIV (for ARM [4,5]) instructions.

Note that in all tested x86-64 microarchitectures, the
throughput of the DIVSD instruction is 4 or 8 cycles, mean-
ing that while an DIVSD instruction is being executed, a
pending DIVSD instruction has to wait 4 or 8 cycles before
entering the floating point division unit. This delay makes

2 As defined in [2], latency refers to the clock cycles needed from
the time the µop is issued to the time the result become available to
dependent µops, while throughput refers to the clock cycles needed
from the time the µop is issued until to the time the functional unit
becomes available again.

5

1 double recv, div;
2 double send1, send2, send3, send4;
3 int message; // secret
4
5 start = rdtscp(); // start timer
6
7 // begin receiver (dependent FP divisions)
8 recv /= div;
9 recv /= div;

10 ...
11 recv /= div;
12 // end of receiver
13
14 if (recv == 1) { // begin speculative execution
15 m bit = bit(message, k); // access secret
16 if (m bit) { // secret dependent branch
17 // begin sender (independent FP divisions)
18 for (int x = 0; x < 100; x++) {
19 send1 /= div;
20 send2 /= div;
21 send3 /= div;
22 send4 /= div;
23 }
24 // end of sender
25 }
26 }
27
28 end = rdtscp(); // end timer

Fig. 4: Pseudo code of our floating point division unit con-
tention based covert channel in a Spectre like transient exe-
cution attack.

the floating point division unit an ideal candidate for us to
create a covert channel.

Figure 4 shows the code used to form the covert chan-
nel. (1) A timer is started (Line 5); (2) A chain of dependent
floating point division instructions begins execution (Line
8). Because the instructions are dependent, each instruction
suffers the full round-trip latency of the floating point divi-
sion unit (see Table 1). This chain of division instructions
acts as a receiver; (3) The result of the receiver instruction
chain is compared in the if statement (Line 14). Note that
we train the if statement to be true so that the body will
execute speculatively while the result of the receiver chain
is being calculated; (4) A single bit of the (secret) message
to transmit is accessed (Line 15) and the inner if statement
branches depending on the value of the secret bit (Line 16);
(5) The inner if statement is trained to be false. Thus, if the
secret bit was ‘1’, the processor backtracks and begins to
speculatively execute a set of independent floating point di-
vision instructions (Line 18-23), which act as a sender. The
“sender” instructions are independent with each other so as
to be issued concurrently and maximally contend with the
“receiver” instructions on the floating point division unit of
the processor. (6) When the “receiver” instructions are com-
pleted, the processor will realize the mis-speculation (recv in

Line 14 was 0) and squash the speculative instructions from
the “sender”. We then stop the timer (Line 28) and measure
the time difference.

Note that if the secret bit was ‘1’, the observed time dif-
ference will be longer, due to the contention in the floating
point division unit with the mis-speculated “sender” instruc-
tions, compared to the case when the secret bit was ‘0’ where
there was no contention. This secret-dependent timing dif-
ference creates a covert channel.

5.1 Covert Channel Properties

We experimentally evaluate the characteristics of the
covert channel on a number of commodity Intel, AMD, and
ARM systems, as listed in Table 1.

Each system runs Linux (Ubuntu 18.04 or 16.04). For
x86 platforms from Intel and AMD, we use rdtscp instruc-
tions for cycle accurate timing measurements. For ARM, we
use an additional thread based software counter instead due
to the architectural limitation. We repeatedly send 0 and 1
values over the covert channel, each for 1,000,000 times,
and measure the timing results. To minimize noise, we use
Linux’s performance governor to disable Turbo-boost (for
X86 platforms) and improve the reliability of the measure-
ments.

Figure 5 shows the results. The X-axis shows the num-
ber of cycles taken to transmit, while the Y axis displays
the probability a measurement has to take that many cycles.
Note first that on all tested platforms, we see clear timing
differences between ‘0’ and ‘1’ values. As explained in Sec-
tion 4.1, not fully pipelined floating point division units in
these platforms allow the mis-speculated division instruc-
tions to contend with the logically prior “receiver” instruc-
tions, resulting in clearly measurable timing differences.

Another interesting observation is that the two AMD
processors and the ARM Cortex-A57 show discrete timing
characteristics—a large proportion of the samples are con-
centrated on a few small measured cycles—whereas Intel
processors show more varied timing behaviors, especially
the Skylake processors. These differences are likely due to
the way the floating point division unit is implemented in
each of these vendors.

In addition to DIVSD, we also evaluated other instruc-
tions that utilize the same floating point division unit to
determine if they could be used for creating covert channels
as well. To this end, we evaluated division and square root
instructions from the AVX (VDIVSD, VDIVSS, VSQRTSD,
VSQRTSS), SSE (SQRTSS, DIVSS), and SSE2 (SQRTSD)
instructions on both the Intel i5-6500 and AMD Ryzen 5
2600 machines, and found that they all can be used to create
covert channels. Finally, we also evaluated floating point
multiplication instructions but were not able to observe

6

CPU ISA Microarch. Latency Throughput Transfer Rate Error Rate
(cycles) (cycles) (KB/s) (%)

Intel Core i7-1185GRE x86-64 Tiger Lake 13–15 4 113.7 0.02
Intel Core i7-1065G7E x86-64 Ice Lake 13–15 4 102.2 0.23
Intel Core i5-8250U x86-64 Kaby Lake R 13–15 4 53.1 0.02
Intel Core i5-6500 x86-64 Skylake 13–15 4 115.1 0.01
Intel Core i5-6200U x86-64 Skylake 13–15 4 74.9 0.04
Intel Xeon E5-2658 v3 x86-64 Haswell 10–20 8 64.1 0.01
Intel Core i7-9530K x86-64 Haswell-E 10–20 8 103.0 0.00
Intel Core i5-3340M x86-64 Ivybridge 10–20 8 75.6 0.16
AMD Ryzen 3 2200G x86-64 Zen 8–13 4 130.2 0.13
AMD Ryzen 5 2600 x86-64 Zen+ 8–13 4 131.8 0.19
NVIDIA Jetson Nano ARMv8 Cortex A57 7-32 5-30 126.0 0.02
Raspberry Pi 4 ARMv8 Cortex A72 6-18 4-16 98.1 0.01

Table 1: Evaluation platforms; latency and throughput for DIVSD (for x86-64 [2]) and FDIV (for ARM [4,5]) instructions;
measured performance (transfer and error rates) of each platform’s floating point division unit covert channel.

any noticeable timing difference, suggesting that the float-
ing point multiplication units in these platforms are well
pipelined, and thus cannot be used to create covert channels.

5.2 Performance Analysis

Next, we analyze the performance of the covert channel
in terms of transfer rate and error rate. The measured transfer
rates of our tested platforms are calculated by simply divid-
ing the total bits sent (1 million bits of 0 and 1 million bits of
1) with the time it took to send them. The error rate of each
system is calculated as follows. We first sort each million
timing samples of 0 and 1. We then find 99 percentile value
of the ‘0’ samples and 1 percentile value of the ‘0’ samples.
If the former (99 percentile of ‘0’ samples) is smaller than
the latter (1 percentile of ‘1’ samples), we pick the average
of the two value as the threshold to determine 0 or 1. If the
99 percentile of 0 is bigger than the 1 percentile of 1, we
set the average of the median values of 0 and 1 samples as
the threshold value. We then apply the threshold against the
collected samples to determine if it correctly classifies the
sample against its known correct value.

The results are shown in Table 1 (see the ‘Transfer Rate’
and ‘Error Rate’ columns). First, notice that the proposed
covert channel supports very high transfer rates on all tested
platforms, ranging from 53 to 130 KB/s. One of the major
factors that affect the transfer rate is the branch predictor of
the processing core. Note that, to send a single bit, either 0
or 1, we need to mistrain the core’s branch predictor so that
the desired secret dependent speculative instructions are ex-
ecuted. The number of needed training runs varies depend-
ing on the architecture and it impacts the transfer rates. On
Tiger Lake and Ice Lake, which are two more recent archi-
tectures from Intel, at least nine training runs were needed
while seven runs were sufficient on all other architectures we
tested. As such, the transfer rates of Tiger Lake and Ice Lake

are about 20% slower than they would be had they needed
seven training runs as in other architectures. On the other
hand, the Jetson Nano platform’s ARM Cortex-A57 core
needs only two training runs to mistrain its branch predictor,
which is the smallest among the all platforms we have tested.
As a result, despite being the slowest architecture in terms
of raw processing power, the Cortex-A57 achieves one of
the highest transfer rates (over 120KB/s). AMD processors
also require only four training runs to mistrain their branch
predictors, which results in relatively higher transfer rates.

Second, the measured error rates are very low on all
tested platforms across multiple generations of Intel, AMD,
and ARM processors. In our earlier work [12], we reported
that AMD processors suffer relatively high error rates
(>5%) than Intel’s. However, we found that this was be-
cause AMD’s floating point units have special performance
optimization for certain division operands (namely divide
by 1, which we originally used) that significantly alter the
execution timing of our dependent division instruction chain
irrespective of contention from the speculative instructions.
After carefully choosing the division operand such that the
timing is only affected by the secret dependent execution of
of speculative instructions, the error rates improved on par
with what we observe on other architectures.

In addition, it is worth mentioning that we observe small
but consistently higher error rates when sending 0 than send-
ing 1. In other words, more zeros are falsely recognized
as ones than the opposite although both cases are rare in
most platforms. For example, we observe 49 errors out of
1,000,000 samples of sending zero while observe 2,142 er-
rors out of the same one million samples of sending one.
We believe that this is because, in our covert channel, spec-
ulative execution of the sender instructions (sender) reliably
increase the execution time of the timed non-speculative in-
structions (receiver) in the pipeline due to increased con-
tention while not executing the speculative instructions (i.e.,
sending zero) does not guarantee the absence of contention

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 150 200 250 300

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(a) TigerLake (i7-1185GRE)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 90 100 110 120 130 140 150 160

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(b) Ice Lake (i7-1065G7)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200 250 300 350 400 450

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(c) Kabylake R (i5-8250U)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 200 250 300 350 400 450

P
ro

b
a
b

ili
ty

Number of Clock Cycles

(d) Skylake (i5-6500)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 250 300 350 400 450

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(e) Skylake (i5-6200U)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200 250 300 350 400 450

P
ro

b
a
b

ili
ty

Number of Clock Cycles

(f) Haswell (E5-2658v3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200 220 240 260 280 300 320 340

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(g) Haswell-E (i7-9530K)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 250 300 350 400 450

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(h) Ivybridge (i5-3340M)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 300 350 400 450 500

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(i) Zen (Ryzen3 2200G)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 320 340 360 380 400 420 440 460

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(j) Zen+ (Ryzen5 2600)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 60 80 100 120 140 160 180 200

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(k) Cortex-A57 (Jetson Nano)*

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 55 60 65 70 75 80 85 90

P
ro

b
a
b
ili

ty

Number of Clock Cycles

(l) Cortex-A72 (Raspberry Pi 4)*

Fig. 5: Floating point division unit based covert channel (Figure 4) timing characteristics; 1,000,000 timing measurement
samples of transmitting 0 (purple) and 1 (green). (*) For ARM platforms, we use an additional thread based software counter
for time measurement due to the lack of high-precision clock source (such as rdtsc in x86) available at the user level.

and the receiver can be delayed by other sources. This slight
bias toward one in our covert channel is different from the
cache covert channel’s behavior reported in [22], which
shows a significant bias toward zero, that required many re-
tries to filter out ”incorrect” zeros. Nevertheless, we would
like to stress that the overall error rates of our floating point
division unit covert channel is very low.

5.3 Sensitivity Analysis

An interesting aspect of our covert channel is that the
size (duration) of the speculation window can be controlled
by adjusting the number of dependent division instructions
used in the “receiver” part of the covert channel—i.e., Line
8-11 in Figure 4. This is because speculatively executed
sender instructions are squashed after the receiver instruc-
tion change is completed. As such, the longer the receiver
instruction chain is, the longer the sender instructions can
contend on the floating point division unit. To understand
the effect of the length of the receiver to the effectiveness

8

of the covert channel, we measure the characteristics of the
covert channel as a function of the number divisions in the
receiver chain.

#divs ‘0’ ‘1’ Diff. Transfer Error
(cycles) (cycles) (cycles) (KB/s) (%)

3 169 169 0 155.0 49.98
6 204 212 8 140.6 0.62
9 242 258 16 126.2 0.03
12 276 299 23 115.1 0.01
15 312 345 33 105.0 0.01
24 418 472 54 84.7 0.01
48 705 814 109 55.5 0.01
72 991 1107 116 41.3 0.01

Table 2: Sensitivity to #of divisions (DIVSD) used in the “re-
ceiver” part of the covert channel on Intel i5-6500.

Table 2 shows the results. The first column shows the
number of division instructions in the receiver chain. The
second and third columns show the median cycles observed
when sending ‘0’ and ‘1’ values over the covert channel,
respectively. The fourth column is the cycle difference be-
tween 0 and 1 samples. Finally, the fifth and the last columns
show the transfer and error rates of the channel.

Note first that the transfer rate is inversely proportional
to the number of divisions in the receiver, which is expected
as the more divisions are used, the longer time is needed
to execute them before squashing the speculation. As such,
from the transfer rate perspective, using a smaller number of
divisions in the receiver may be desirable. However, when
the number of divisions is too small, as in the case of 3 di-
visions, the covert channel becomes ineffective as the error
rate is too high. This is because the speculation window is
not long enough for the sender instructions to be able to ef-
fectively contend with the receiver instructions on the float-
ing point division unit.

The error rate dramatically decreases as we increase the
number of divisions in the receiver. At 9 or more divisions,
the covert channel shows very low error rate while showing
gradually decreasing transfer rates. For this platform, we can
see using 12 divisions in the receiver chain is a “sweet spot”
in the sense that it offers high enough performance and low
noise. While different platforms may have different sweet
spots, we nevertheless used the same 12 divisions in all plat-
forms, unless noted otherwise, as it performed reasonably
well in all of them.

6 SpectreRewind in JavaScript

In this section, we show that SpecreRewind attack can
work in a JavaScript sandbox environment.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 60 70 80 90 100 110

P
ro

b
a
b
ili

ty

Number of Clock Cycles

Fig. 6: Timing characteristics of division floating point
unit covert channel execution in Google Chrome JavaScript
sandbox

Similarly to the original Spectre attack PoC written in
JavaScript [20], we developed a PoC that implements our
floating point division unit covert channel in JavaScript,
and successfully execute it on Google Chrome version
62.0.3202.75, which allows a website to read private mem-
ory from the process in which it runs. For a high resolution
timer, as in [20], we also followed the approach described
by Schwarz et al. [32], which utilize Web Workers along
with SharedArrayBuffer. This allows for the creation of
a separate thread that continuously increments a value in
shared memory that the original thread can use to time code
execution. The main difference in our PoC is that we do
not rely on any cache state manipulation techniques unlike
Kocher et al. [20].

Figure 7 shows a snippet of the final code along with the
generated assembly, produced by the JavaScript JIT com-
piler, of the JavaScript version side-by-side with the natively
compiled C version’s assembly code. While the number of
instructions the JavaScript version is bigger than that of
the natively compiled version, we find that the majority of
these extra instructions happen in the section of code that
is responsible for accessing the message and branching on
bit values. Moreover, the all important division operations
are compiled neatly down to a few floating point division
instructions in both versions. We find that the resolution
of the SharedArrayBuffer based timer is, though not as
good as the native timers, sufficient for data transmission.
We have, however, increased the number of receiver code
divisions from 12 to 24 to improve signal over the lower
resolution timer. Figure 6 shows the probability distribution
of the transmission of the JavaScript based covert channel,
which show distinguishable timing differences depending
on the value of the secret bit it accesses during the transient
execution.

Note that our current JavaScript PoC may not work in
recent Chrome browsers which implement Spectre preven-
tion mechanisms because they also appear to block specula-

9

JavaScript JIT Compiled Native Compiled

Fig. 7: Excerpt from JavaScript covert channel code (Left), the assembly the JIT compiler created (Center), and the native
generated assembly (Right)

tive execution of the secret dependent division instructions
needed by SpectreRewind. Circumventing the Spectre de-
fense mechanisms in recent versions of JavaScript sandbox
environments is future work.

7 SpectreRewind in Meltdown

In this section, we demonstrate a complete cross-
domain transient execution attack using the proposed
SpectreRewind covert channel.

Our attack is based on the Meltdown attack [22], which
allows transient instructions to access secrets belonging
to other processes and security domains, including the OS
and virtual machines. In a Meltdown attack, the attacker at-
tempts to read from a privileged memory address, such as a
kernel virtual address, from userspace. While architecturally
such an access will generate an exception, a speculatively
executed memory access can forward the secret data to a
dependent load instruction, which encodes the secret into a
cache state change, before it can be squashed.

In our modification, we simply surround the exception
generating memory access with DIVSD sender and receiver
instructions as shown in Figure 4. In more detail, we base
our implementation on the original Meltdown open-source
repository 3. We modified a single function libkdump -

read(addr) in libkdump.c, which reads a single byte
from the given address (addr), to utilize our DIVSD based
SpectreRewind covert channel. The rest of the code and
other settings are unchanged. For the experiment, we used
Intel i5-6500 processor and disabled the kernel page-table

isolation (KPTI), the software based meltdown mitigation
feature in Linux.

Note that because a Meltdown attack generates excep-
tions, it is necessary to suppress the exceptions. In the origi-
nal PoC, either Intel’s Transactional Synchronization Exten-
sion (TSX) or signal handling was used to suppress the ex-
ceptions. In our approach, however, an exception generating
secret memory access can only occur in a mis-speculated
transient execution, which will be squashed when the the
receiver code has completed. Thus, we effectively suppress
the exception without needing to use TSX or signal handling
methods used in the original Meltdown PoC.

Method # Reads Success (%)
Original (SigHandle) 2197 97.78

Original (TSX) 217691 100.00
SpectreRewind 193399 99.97

Table 3: Performance of SpectreRewind covert channel
(DIVSD) based Meltdown attack (Demo #3: Reliability test
of the original Meltdown PoC repository) on Intel i5-6500.

Table 3 compares the performance of our modified
Meltdown attack with the original ones, which utilize
flush+reload based covert channels. Of the two original
versions we evaluated, Original (SigHandle) suppresses
exception by installing a signal handler while the Original
(TSX) does so by utilizing TSX. We use the reliability PoC
in the official Meltdown repository, which continuously

3 https://github.com/IAIK/meltdown

10

https://github.com/IAIK/meltdown

reads a single byte from a kernel memory address and
reports the number of reads and the success (i.e., correct
reading) rate. In each configuration, we ran the reliability
PoC for 60 seconds and measured the performance on the
Intel Core i5-6500 (Skylake) processor, which supports
TSX. As can be seen in the table, our SpectreRewind ver-
sion of Meltdown performs significantly faster than the
signal handler version of the original Meltdown in terms of
the speed and the success rate, while it performs similarly
compared to the TSX version of the original attack.

8 Discussion

In this section, we discuss the benefits and shortcomings
of SpectreRewind, and its mitigation options.

8.1 Benefits and Limitations

SpectreRewind is a new type of contention-based covert
channel, which is available in a wide range of micro-
architectures while providing high bandwidth and low noise
characteristics. As such, we believe that our covert channel
can be used as an alternative covert channel to cache-based
ones for transient execution attacks. Our covert channel may
be preferable to Flush+Reload in environments where in-
structions to flush cache lines (e.g. CLFLUSH in x86) are not
available (e.g., many ARM platforms, browser sandboxes).

One major downside of SpectreRewind is that it requires
sender and receiver instructions be present simultaneously
at the same hardware thread, which restricts its use in
cross-core attack scenarios (e.g., [20]). Also, finding an ex-
ploitable gadget, which includes secret dependent division
instructions, could be challenging in real application bina-
ries. In addition, the sender and receiver instructions must
be executed from the same protection domain—either both
in kernel or both in user. This is because a CPU privilege
mode change involves a pipeline flush. Therefore, initiating
the receiver instructions at the user-level while executing
the sender instructions at the kernel (e.g., a system call)
may not be feasible. Note, however, that speculative access
to a memory location in a different protection domain (e.g.,
access to a kernel address in Meltdown-type attacks) is still
possible because the involved instructions are still executed
at the same protection domain, as we have demonstrated in
Section 7.

8.2 Mitigation Strategies

As SpectreRewind requires out-of-order contention on
not fully pipelined functional units in the processor, one mit-
igation strategy is to redesign the functional units to be fully

pipelined. But such a re-design may not always be possible.
Another alternative is to adopt a strict in-order scheduling
policy such that younger instructions (sender) can never be
issued before all older instructions are issued first, though it
would incur high performance cost.

An effective mitigation strategy is to delay or prevent
the execution of secret dependent instructions during the
transient execution phase. SpectreGuard [13] is an exam-
ple of such an approach, where secret data is marked as se-
cret in the application process’s page table and then is disal-
lowed from being forwarded to dependent instructions until
it reaches a point where it can be logically considered safe
to forward. ConTExT [30] uses a similar approach, mark-
ing data as secret in the page table and delaying propagation
of the value of the secret. Intel and NVIDIA also proposed
similar mitigation solutions [34,8]. NDA [41] and STT [46]
are software transparent hardware solutions that selectively
allow some (safe) instructions to be executed speculatively
while preventing other (unsafe) instructions. All these tech-
niques that prevent secret dependent speculative execution
may mitigate SpectreRewind covert channels.

9 Related Work

Most known transient execution attacks utilize stateful
cache-based covert channels, which exploit the timing dif-
ferences in accessing cached (hit) and non-cached (miss)
memory addresses. Cache-based covert channels are pow-
erful because secret dependent state changes in a cache can
be long lasting (persistent), making secret recovery rela-
tively easier for an attacker. Also, they generally offer high
bandwidth and low noise compared to other covert channels
in modern processors. For these reasons, there have been a
flurry of research proposals to protect specifically against
cache based covert channels [43,18,27,14] as a mean to
defend against transient execution attacks. For example, In-
visiSpec [43] and SafeSpec [18] are both recently proposed
hardware solutions that defer updating microarchitectural
states of caches (and TLBs) until such changes are con-
sidered to be safe. Gonzalez et al [14] implemented such
a defense on an actual out-of-order open source RISC-V
processor core. CleanupSpec [27] lets the microarchitec-
tural changes from transient instructions occur but later
undo those changes after recognizing mis-speculation. In
contrast, SpectreRewind exploits a contention-based covert
channel and thus bypasses all these defense mechanisms
against stateful cache covert channels.

Contention-based covert channels are well studied in the
context of Simultaneous multi-threading (SMT) processors.
Wang and Lee showed various ways to create covert/side
channels in SMT processors [40] and discussed possible
mitigations. Acıiçmez and Seifert used the contention on

11

the shared integer multiplication unit as a side channel [3]
to break a cryptographic function in OpenSSL running con-
currently on a separate hardware thread on the same core.
CacheBleed [45] exploited L1 cache bank contention as a
covert channel while MemJam [25] instead utilized false
read-after-write dependencies to create a covert channel.
Both CacheBleed and MemJam applied their respective
covert channels to break constant time OpenSSL imple-
mentations. Covert Shotgun [11] systematically explored
possible contention-based covert channels by exhaustively
executing instructions on different SMT threads of the same
physical core. PortSmash [9] utilized port contention to cre-
ate a microarchitectural side-channel to leak the secret key
from a vulnerable version of OpenSSL. SmotherSpectre [7]
utilized a port contention based side channel to mount a
transient execution attack, specifically the Branch Target
Injection attack (BTI, a.k.a., Spectre variant 2 [20]). Using
BTI allowed this attack to run attacker code to transiently
access secret in the victim and then to execute secret depen-
dent instructions, which can be monitored by the attacker’s
process on a different SMT thread of the same core. AB-
Synth [15] goes a step further by automatically discovering
the best set resources, not just execution ports in most prior
works, that can leak information with a blackbox analysis.
SMT-cop [35] prevent these SMT based covert channels
by providing spatial and temporal partitioning of the SMT
resources. SMT based covert channels can also be prevented
by simply disabling SMT. Our work differs from these prior
works as we focus on contention based covert channels in
the non-SMT context, specifically from the single hardware
thread context, and in the context of transient execution
attacks.

Concurrent to our work, Behnia et al., also observe
that mis-speculated young instructions can delay non-
speculative old instructions in out-of-order processors [6].
They then propose a simple but clever way to convert the
resulting secret dependent timing difference into memory
access ordering change, which in turn results in persistent
cache state change that can be observed externally by an
attacker. This transformation makes their attack, which they
call speculative interference attack, be viable not only in
the same-thread scenarios but also in the cross-core attack
scenarios. In this sense, they enhanced the applicability of a
SpectreRewind based attack. However, because their attack
still requires certain interference gadgets (similar to our
SpectreRewind gadget in Figure 4), it is mainly applicable
when the attacker can control victim’s instruction streams
(e.g., JavaScript sandbox or Linux kernel eBPF [20]) and
finding exploitable gadgets in real-world applications will
be challenging as we discussed in Section 8.

10 Conclusion and Future Work

In this paper, we presented SpectreRewind, a new ap-
proach to create and exploit contention-based covert chan-
nels in transient execution attacks from a single hardware
thread. We identified that speculatively executed young in-
structions can delay logically older non-speculative (bound-
to-retire) instructions due to contention on non-pipelined
functional units of modern out-of-order processors. Specifi-
cally, we showed that contention on non-pipelined floating
point division units in commodity Intel, AMD, and ARM
processors can create high-bandwidth, low-noise covert
channels in same thread transient execution attacks. We
showed that the covert channel can be used in the JavaScript
sandbox of a Chrome browser. We also presented a com-
plete end-to-end Meltdown attack using our covert channel.
As future work, we plan to develop end-to-end transient
execution attacks leveraging the covert channel. Also, we
will further investigate if other microarchitectural structures
can be used to create contention based covert channels in
transient execution attacks.

Acknowledgements

This research is supported in part by NSF grant CNS
1718880 and NSA Science of Security initiative contract no.
#H98230-18-D-0009.

References

1. Cache speculation side-channels. ARM White paper (2018)
2. Abel, A., Reineke, J.: uops.info: Characterizing latency, through-

put, and port usage of instructions on intel microarchitectures. In:
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 673–686. ACM, New York, NY, USA
(2019)

3. Aciicmez, O., Seifert, J.P.: Cheap hardware parallelism implies
cheap security. In: Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 80–91 (2007)

4. ARM: Cortex-A72 Software Optimization Guide. https:

//static.docs.arm.com/uan0016/a/cortex_a72_

software_optimization_guide_external.pdf (2015)
5. ARM: Cortex-A57 Software Optimization Guide. https:

//static.docs.arm.com/uan0015/b/Cortex_A57_

Software_Optimization_Guide_external.pdf (2016)
6. Behnia, M., Sahu, P., Paccagnella, R., Yu, J., Zhao, Z., Zou, X.,

Unterluggauer, T., Torrellas, J., Rozas, C., Morrison, A., Mckeen,
F., Liu, F., Gabor, R., Fletcher, C.W., Basak, A., Alameldeen, A.:
Speculative Interference Attacks: Breaking Invisible Speculation
Schemes. In: Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2020)

7. Bhattacharyya, A., Sandulescu, A., Neugschwandtner, M.,
Sorniotti, A., Falsafi, B., Payer, M., Kurmus, A.: Smotherspectre:
exploiting speculative execution through port contention. In: ACM
SIGSAC Conference on Computer and Communications Security
(CCS), pp. 785–800 (2019)

12

https://static.docs.arm.com/uan0016/a/cortex_a72_software_optimization_guide_external.pdf
https://static.docs.arm.com/uan0016/a/cortex_a72_software_optimization_guide_external.pdf
https://static.docs.arm.com/uan0016/a/cortex_a72_software_optimization_guide_external.pdf
https://static.docs.arm.com/uan0015/b/Cortex_A57_Software_Optimization_Guide_external.pdf
https://static.docs.arm.com/uan0015/b/Cortex_A57_Software_Optimization_Guide_external.pdf
https://static.docs.arm.com/uan0015/b/Cortex_A57_Software_Optimization_Guide_external.pdf

8. Boggs, D.D., Segelken, R., Cornaby, M., Fortino, N., Chaudhry,
S., Khartikov, D., Mooley, A., Tuck, N., Vreugdenhil, G.: Mem-
ory type which is cacheable yet inaccessible by speculative in-
structions (2019). US Patent App. 16/022,274

9. Cabrera Aldaya, A., Bob Brumley, B., ul Hassan, S.,
Pereida Garcı́a, C., Tuveri, N.: Port contention for fun and
profit. In: IEEE Symposium on Security and Privacy (SP) (2019)

10. Canella, C., Bulck, J.V., Schwarz, M., Lipp, M., von Berg, B., Ort-
ner, P., Piessens, F., Evtyushkin, D., Gruss, D.: A systematic eval-
uation of transient execution attacks and defenses. In: USENIX
Security Symposium (2019)

11. Fogh., A.: https://cyber.wtf/2016/09/27/covertshotgun/ (2016)
12. Fustos, J., Bechtel, M., Yun, H.: Spectrerewind: Leaking secrets

to past instructions. In: Proceedings of the 4th ACM Workshop on
Attacks and Solutions in Hardware Security, pp. 117–126 (2020)

13. Fustos, J., Farshchi, F., Yun, H.: SpectreGuard: An Efficient Data-
centric Defense Mechanism against Spectre Attacks. In: Design
Automation Conference (DAC), pp. 61–1 (2019)

14. Gonzalez, A., Korpan, B., Zhao, J., Younis, E., Asanović, K.:
Replicating and mitigating spectre attacks on an open source risc-v
microarchitecture. In: Third Workshop on Computer Architecture
Research with RISC-V (CARRV) (2019)

15. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: Absyn-
the: Automatic blackbox side-channel synthesis on commodity
microarchitectures. In: Network and Distributed Systems Secu-
rity (NDSS) (2020)

16. Horn, J.: speculative execution, variant 4: speculative store
bypass. https://bugs.chromium.org/p/project-zero/

issues/detail?id=1528 (2018)
17. Intel: Intel Analysis of Speculative Execution Side Channels (Rev.

4.0). Tech. rep. (2018). URL https://software.intel.com/

sites/default/files/managed/b9/f9/336983-Intel-

Analysis-of-Speculative-Execution-Side-Channels-

White-Paper.pdf
18. Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D.,

Ponomarev, D., Abu-Ghazaleh, N.: SafeSpec: Banishing the Spec-
tre of a Meltdown with Leakage-Free Speculation. In: Design Au-
tomation Conference (DAC) (2019)

19. Kiriansky, V., Waldspurger, C.: Speculative buffer overflows: At-
tacks and defenses. arXiv preprint arXiv:1807.03757 (2018)

20. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M.,
Yarom, Y.: Spectre attacks: Exploiting speculative execution. In:
IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society (2019)

21. Koruyeh, E.M., Khasawneh, K.N., Song, C., Abu-Ghazaleh, N.:
Spectre returns! speculation attacks using the return stack buffer.
In: USENIX Workshop on Offensive Technologies (WOOT)
(2018)

22. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,
A., Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Ham-
burg, M.: Meltdown: Reading kernel memory from user space. In:
USENIX Security (2018)

23. Maisuradze, G., Rossow, C.: ret2spec: Speculative execution us-
ing return stack buffers. In: ACM Conference on Computer and
Communications Security (CCS), pp. 2109–2122. ACM (2018)

24. Minkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J.,
Genkin, D., Gruss, D., Sunar, B., Piessens, F., Yarom, Y.: Fallout:
Reading kernel writes from user space. In: ACM SIGSAC Con-
ference on Computer and Communications Security (2019)

25. Moghimi, A., Wichelmann, J., Eisenbarth, T., Sunar, B.: Memjam:
A false dependency attack against constant-time crypto implemen-
tations. International Journal of Parallel Programming (2019)

26. Oberman, S.F.: Floating point division and square root algo-
rithms and implementation in the amd-k7/sup tm/microproces-
sor. In: IEEE Symposium on Computer Arithmetic (Cat. No.
99CB36336), pp. 106–115. IEEE (1999)

27. Saileshwar, G., Qureshi, M.K.: Cleanupspec: An “undo” approach
to safe speculation. In: International Symposium on Microarchi-
tecture (MICRO), p. 73–86. ACM (2019)

28. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze,
G., Razavi, K., Bos, H., Giuffrida, C.: RIDL: Rogue in-flight data
load. In: S&P (2019)

29. van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom,
Y.: CacheOut: Leaking data on Intel CPUs via cache evictions.
https://cacheoutattack.com/ (2020)

30. Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruß,
D.: Context: A generic approach for mitigating spectre. In: Net-
work and Distributed System Security (NDSS) (2020)

31. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina,
J., Prescher, T., Gruss, D.: ZombieLoad: Cross-privilege-boundary
data sampling. In: ACM Conference on Computer and Communi-
cations Security (CCS) (2019)

32. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic
timers and where to find them: High-resolution microarchitectural
attacks in javascript. In: A. Kiayias (ed.) Financial Cryptography
and Data Security, pp. 247–267. Springer International Publishing,
Cham (2017)

33. Stecklina, J., Prescher, T.: Lazyfp: Leaking fpu register
state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480 (2018)

34. Sun, K., Branco, R., Hu, K.: A new memory type against
speculative side channel attacks. https://github.com/

IntelSTORMteam/Papers (2019)
35. Townley, D., Ponomarev, D.: Smt-cop: Defeating side-channel at-

tacks on execution units in smt processors. In: 2019 28th Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT) (2019)

36. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on
aes, and countermeasures. J. Cryptology 23, 37–71 (2010)

37. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multi-
threading: Maximizing on-chip parallelism. In: International Sym-
posium on Computer Architecture (ISCA), pp. 392–403. ACM
(1995)

38. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Wenisch, T.F., Yarom, Y., Strackx,
R.: Foreshadow: Extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Sym-
posium. USENIX Association (2018)

39. Van Bulck, J., Moghimi, D., Schwarz, M., Lipp, M., Minkin, M.,
Genkin, D., Yuval, Y., Sunar, B., Gruss, D., Piessens, F.: LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection. In: 41th IEEE Symposium on Security and Pri-
vacy (S&P’20) (2020)

40. Wang, Z., Lee, R.B.: Covert and side channels due to processor
architecture. In: Annual Computer Security Applications Confer-
ence (ACSAC), pp. 473–482 (2006)

41. Weisse, O., Neal, I., Loughlin, K., Wenisch, T.F., Kasikci, B.: Nda:
Preventing speculative execution attacks at their source. In: Pro-
ceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 572–586 (2019)

42. Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Strackx, R., Wenisch, T.F., Yarom, Y.:
Foreshadow-NG: Breaking the virtual memory abstraction with
transient out-of-order execution. Technical report (2018)

43. Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C.W., Tor-
rellas, J.: InvisiSpec: Making Speculative Execution Invisible in
the Cache Hierarchy. In: International Symposium on Microar-
chitecture (MICRO) (2018)

44. Yarom, Y., Falkner, K.: Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In: 23rd USENIX Security
Symposium (USENIX Security 14), pp. 719–732. USENIX Asso-
ciation, San Diego, CA (2014)

13

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://cacheoutattack.com/
https://github.com/IntelSTORMteam/Papers
https://github.com/IntelSTORMteam/Papers

45. Yarom, Y., Genkin, D., Heninger, N.: Cachebleed: a timing attack
on openssl constant-time rsa. Journal of Cryptographic Engineer-
ing (2017)

46. Yu, J., Yan, M., Khyzha, A., Morrison, A., Torrellas, J., Fletcher,
C.W.: Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data. In: International Symposium on
Microarchitecture (MICRO), pp. 954–968 (2019)

14

	Introduction
	Background
	Threat Model
	SpectreRewind
	Floating Point Division Unit Covert Channel
	SpectreRewind in JavaScript
	SpectreRewind in Meltdown
	Discussion
	Related Work
	Conclusion and Future Work

