
Virtual Gang Scheduling of Parallel Real-Time Tasks
Waqar Ali

University of Kansas, Lawrence, USA
wali@ku.edu

Rodolfo Pellizzoni
University of Waterloo, Ontario, CA

rpellizz@uwaterloo.ca

Heechul Yun
University of Kansas, Lawrence, USA

heechul.yun@ku.edu

Abstract—We consider the problem of executing parallel real-
time tasks according to gang scheduling on a multicore system
in the presence of shared resource interference. Specifically, we
consider sets of gang-tasks with precedence constraints in the
form of a DAG. We introduce the novel concept of a virtual
gang: a group of parallel tasks that are scheduled together as a
single entity. Employing virtual gangs allows us to tightly bound
the effect of shared resource interference. It also transforms
the original, complex scheduling problem into a form that can
be easily implemented and is amenable to exact schedulability
analysis, further reducing pessimism. We present and evaluate
both optimal and heuristic methods for forming virtual gangs
based on a known interference model and while respecting all
precedence constraints among tasks. When precedence constraints
are not considered, we also compare our approach against existing
response-time analysis for globally scheduled gang-tasks, as well
as general parallel tasks. The results show that our approach
significantly outperforms state-of-the-art multicore schedulability
analyses when shared-resource interference is considered. Even in
the absence of interference, it performs better than the state-of-
the-art for highly parallel tasksets.

Index Terms—real-time, gang scheduling, precedence con-
straints, safety critical, parallel tasks

I. INTRODUCTION

High-performance multicore embedded computing platforms
are increasingly being used in safety-critical real-time appli-
cations, such as avionics, robotics and autonomous vehicles.
However, such use brings significant challenges due to the
difficulties in ensuring predictable timing on these platforms.

In a multicore platform, tasks running concurrently can
experience high timing variations due to the shared hardware
resource contention. The effect of contention highly depends
on the underlying hardware architecture which can often show
extremely poor worst-case behaviors [1]. Furthermore, which
tasks are co-scheduled at a time instant depends on the OS
scheduler’s decision and can vary over time. In other words,
timing of a task is coupled with the rest of the tasks, the OS
scheduling policy, and the underlying hardware. For this reason,
in the use-cases where hard real-time guarantees are a must,
such as avionics, it is recommended to disable all but one core
of a multicore processor [2].

Gang scheduling was originally proposed in high-
performance computing to maximize performance of parallel
tasks [3], and many real-time varieties have since been
studied [4]–[8]. In gang scheduling, threads of a parallel task
are scheduled only when there are enough cores available
to schedule all of them simultaneously. Therefore, gang

This research is supported by NSF CNS 1718880, CNS 1815959, and NSA
Science of Security initiative contract #H98230-18-D-0009.

scheduling reduces scheduling induced timing variations
and synchronization overhead [7]. However, most prior
gang scheduling studies do not consider the co-runner
dependent timing variations due to contention in the shared
hardware resources, and instead simply assume that WCETs
already account for such effects, which may introduce severe
pessimism in their analysis [9].

To address this problem, a more restrictive gang scheduling
policy was recently proposed [10], which simply schedules one
real-time gang task at a time; any remaining cores are allowed
to schedule best-effort tasks but their shared resource usages are
regulated so that their impact to the real-time gang task can be
strictly bounded. From the analysis point of view, this approach
effectively transforms the problem of parallel real-time task
scheduling into a well understood unicore scheduling problem,
which greatly simplifies analysis and reduces pessimism. How-
ever, the downside is that it can also greatly reduce real-time
task schedulability as many cores can be left idling even when
there are other real-time tasks ready to be scheduled.

In this paper, we propose a new gang scheduling approach,
which is based on the novel concept of a virtual gang: a group
of gang tasks that are scheduled together as a single entity. In
our approach, parallel real-time tasks are grouped into a set of
virtual gangs, which are then scheduled one virtual gang at a
time using a gang scheduler as in [10]. All member tasks of
a virtual gang share the same period and are synchronously
released. Employing virtual gangs allows us to tightly bound
the effect of shared resource interference while minimizing
resource under utilization because the members of a virtual
gang are determined a priori and do not change at run-time.
Furthermore, it allows us to use the same unicore schedulability
analysis [11], further reducing analysis pessimism. In forming
virtual gangs, we consider precedence constraints among the
gang tasks, which are expressed in the form of DAGs. This
allows us to handle complex inter-task dependencies that are
commonly observed in real world applications [12], [13].

We present and evaluate both optimal and heuristic meth-
ods for forming virtual gangs, which utilize an interference
model and respect the given precedence constraints. When
precedence constraints are not considered, we also compare our
approach against existing response-time analysis for globally
scheduled gang-tasks, as well as general parallel tasks. The re-
sults show that our approach significantly outperforms state-of-
the-art multicore schedulability analyses when shared-resource
interference is considered. Even in the absence of interference,
it performs better than the state-of-the-art for highly parallel



tasksets. To the best of our knowledge, this is the first work
which enables schedulability analysis of real-time gang tasks
with precedence constraints.

The rest of the paper is organized as follows. We discuss
related work in Section II. We then define our system model in
Section III. We present the proposed virtual gang formation al-
gorithms and their schedulability analysis results in Section IV
and in Section V, respectively. We conclude in Section VI.

II. RELATED WORK

Parallel real-time tasks are typically modeled as follow-
ing: Fork-join model [14], DAG model [15] and gang task
model [4]–[6]. In the fork-join model, a task alternates between
parallel (fork) and sequential (join) phases over time. In the
DAG model, a task is represented as a directed acyclic graph
with a set of associated precedence constraints, which allows
more flexible scheduling as long as the constraints are satisfied.
In both models, threads of a parallel task are scheduled inde-
pendently. Lastly, in the gang task model, a task is characterized
by a number of threads, which are scheduled simultaneously
only if there are enough available cores. In literature, the gang
task model is further distinguished by rigid, moldable, and
malleable varieties depending on whether the number of threads
of a gang task can vary over time [5], [6]. More recently,
the bundled gang model [7] was proposed, which extends the
rigid gang task model to support gang scheduling of different
number of threads in different phases, called bundles, which are
sequentially executed within a job. In this work, we consider
a more general gang task model, in which each task is a rigid
gang, but precedence constraints between tasks with the same
period can be expressed in the form of a DAG.

In scheduling gang tasks, both fixed-priority and dynamic
priority real-time versions of gang scheduling algorithms,
namely Gang FTP and Gang EDF, respectively, are studied and
analyzed [5], [6], [8]. Gang FTP [5] schedules rigid and peri-
odic real-time gang tasks as follows: At each scheduling event,
it schedules the highest priority task τi on the first hi available
cores (if exist) among the ready tasks. The process repeats for
the remainder of the active tasks on any available cores. Gang
EDF [6] works similarly except a task’s priority is determined
dynamically at runtime. However, these prior methods do not
consider interference caused by shared hardware resources in
multicores as they allow any gang tasks to be co-scheduled as
long as there are available cores. Consequently, a gang task may
need to consider every possible interleaving of co-scheduled
tasks to determine its WCET, which leads to high pessimism.
In contrast, RT-Gang [10] implements a more restrictive form
of fixed priority gang scheduling policy, which limits only one
gang task to be scheduled at any time, to address this problem,
but at the cost of significant utilization loss.

III. SYSTEM MODEL

We consider a multicore processor based platform π, which
contains m unit-speed CPU cores. We consider a system
comprising a set Γ of n periodic, rigid gang real-time tasks
with implicit deadlines: Γ = {τ1, τ2, ..., τn}. Each task τi =
(ci, hi, ri, Ti) is characterized by its WCET ci in isolation, the

number of cores hi ≤ m needed to execute, the shared resource
demand factor ri in the range [0, 1], and the period Ti. The
system also comprises a set of k DAGs {G1, G2, ..., Gk}. Each
DAG Gi = (vi, ei, Ti) expresses a set of precedence constraints
among tasks. The node set vi ⊆ Γ consists of a subset of the
tasks in Γ; we assume that all tasks in vi must have the same
period Ti, and no task in Γ can belong to the node set of more
than one DAG. The edge set ei : vi × vi consists of ordered
pairs of the form (τp, τq) describing the precedence constraints
among the tasks in vi: formally, this means that the j-th job of
τp must finish before the j-th job of τq can start executing.

A. Virtual Gangs and Scheduler

We assume that the number of distinct periods q within Γ is
small relative to n. In other words, multiple tasks may share
the same period, which is common in practice (e.g., [13]).
All tasks that share the same period T forms a candidate-
set ∆T = {∀τi ∈ Γ | Ti = T}. A virtual gang wl is a subset
of the tasks within the candidate-set ∆T that are statically
grouped together as a schedulable unit. Each virtual gang
wl = (Cl, Hl, Rl, Tl) is characterized by its WCET Cl, the
core requirement Hl and the resource demand Rl; the latter
two are equal to the sum of the respective parameters of all
of its member tasks. For the virtual gangs of ∆T , there must
exist a linear ordering between them such that all precedence
constraints {G1, G2, ..., Gk} are satisfied. The virtual gangs of
all candidate sets are scheduled according to a preemptive fixed-
priority gang scheduling scheme, which schedules one virtual
gang at a time on π, subject to the linear ordering of each
candidate set. We require all tasks in a candidate-set to be
synchronously released and all member tasks of a virtual gang
to be scheduled in parallel under the gang scheduler.

B. Interference Model

As noted earlier, the member tasks of a virtual gang are
scheduled simultaneously on π. As such, they can suffer from
interference on shared hardware resources (e.g., cache, memory
bandwidth). In general, it is difficult to precisely model the
impact of interference on a COTS hardware platform. For
analysis purpose, we use a simple interference model in which
the impact of interference to a virtual gang wl is incorporated
in its WCET Cl by scaling the length of its longest constituent
task as follows: Cl = max∀τk∈wl

{ck}×max(Rl, 1); intuitively,
we assume that wl suffers no interference until the resource is
over-utilized, after which we apply a linear scaling. We note
that this simple interference model is based on our experimental
evaluation on two real embedded platforms (a NVIDIA Jetson
Nano and a Raspberry Pi 4) using a set of synthetic benchmarks
where they compete for memory bandwidth of the evaluated
platforms. We do not, however, claim the general correctness
of the interference model. If a different interference model
exists for a given hardware platform, it can be used instead.
Furthermore, we stress that regardless of the used interference
model and its accuracy, it stands to reason that the static nature
of virtual gangs enables low timing variability, effective shared
resource partitioning (e.g, [16], [17]), and accurate WCET
estimations.



IV. VIRTUAL GANG FORMATION

Problem Statement: For a given candidate-set ∆T of N tasks
with the same period T and a given multicore platform with
m unit-speed CPU cores with a known interference model, we
want to partition the N tasks into a set of virtual gangs such
that the total completion time of the virtual gangs is minimized,
while respecting all the precedence constraints among the
original tasks. In the following, we first describe a satisfiability
modulo theories (SMT) based optimal algorithm for finding the
virtual gang configuration with minimum completion time and
then explain a heuristic solution.

A. Optimal Virtual Gang Formation via SMT

In the SMT based solution for virtual gang formation, we
write the constraints for our optimization problem in a form that
can be understood by an SMT solver; based on the candidate-
set. The resulting SMT script is then fed to the SMT solver
which declares the problem as either satisfiable or unsatisfiable.
For a satisfiable problem, we also obtain a model for the input
parameters that satisfies the constraints of the problem. We use
quantifier free linear integer arithmetic logic (QF-LIA) of SMT.
In the following, we describe the parameters of our problem
and the constraints for a feasible solution.
Parameters: For each task τi in the considered candidate-set
∆T , we use the variable xi to denote the index of the virtual
gang that τi is assigned to in a feasible solution. Note that for
a candidate-set with N tasks, at-most N virtual gangs can be
formed. We assume that the virtual gangs are indexed in the
linear order in which they are required to execute. Consistent
with our system model, we use the variable Ci to denote the
length (WCET) and the variable Ri to denote the resource
demand of each virtual gang.
Constraints: The parameters xi, Ci and Ri are subject to the
following constraints:

Constraint 1: ∀τi ∈ ∆T : 1 ≤ xi ≤ N
The value of each xi must be between 1 and N ; because we
can have at-most N virtual gangs.

Constraint 2: ∀j = 1...N :
∑

∀τi∈∆T |xi=j
hi ≤ m

The combined core demand of all the tasks assigned to each
virtual gang must not exceed the total number of cores m.

Constraint 3: ∀Gp | Tp = T, ∀(τi, τj) ∈ ep : xi < xj

If τi has a precedence constraint with τj , the virtual gang xi
containing τi must execute before the virtual gang xj .

Constraint 4: ∀j = 1...N : Rj ≥
∑

∀τi∈∆T |xi=j
ri

The combined resource demand Rj of the j-th virtual gang
must be greater than or equal to the sum of the resource
demands of its constituent tasks.

Constraint 5: ∀j = 1...N, ∀τi ∈ ∆T | xi = j : Cj ≥
ci ∧ Cj ≥ ci ×Rj
The length Cj of the j-th virtual gang must be greater than or
equal to the length of each of its constituent tasks, as well as
the length of each constituent task multiplied by the combined
resource demand Rj . In essence, this means that Cj must be
at least equal to the length of the longest constituent task

multiplied by max(1, Rj); the above formulation ensures that
the constraints are expressed in linear arithmetic by removing
the max.

Constraint 6:
∑N
j=1 Cj = C

Finally, the combined length of all virtual gangs must be equal
to a specified value C whose minimum possible assignment
needs to be found.

Since we use quantifier free logic, in our SMT formu-
lation, we remove the universal quantifier (∀) by repeating
each constraint for every task τi, index j and/or edge (τi, τj)
in the corresponding constraint formula. To find the virtual
gang combination with minimum collective length, we conduct
binary search on the combined gang length value C; starting
with the sum of the length of all the tasks in the candidate-
set i.e., Cinit =

∑
∀τi∈∆T

ci. In each step of the binary
search, the SMT script is re-run with a new value of C; to
check if a model of input parameters (xi, Rj and Cj) can be
found which satisfies the constraints. If a satisfiable solution is
found, the maximum combined gang length is reduced (search
down); otherwise it is increased (search up). The process is
repeated until the maximum combined gang length cannot be
changed any further; in which case, the last solution, that was
found satisfiable, is taken as the optimal solution. Note that a
satisfiable solution can be found for any value of C equal to
or greater than the optimal because Constraint 5 requires the
values of Cj to be greater than or equal, rather than exactly
equal, to the adjusted length of the longest constituent task.
This allows the SMT solver to find feasible solutions quicker;
note that the same applies for Rj in Constraint 4. The values
of xi in the optimal solution are used to create a new taskset
of virtual gangs by combining the tasks in the candidate-set.

B. Virtual Gang Formation Heuristic

Due to the combinatorial nature of the optimization problem
of virtual gang formation, the time required for obtaining the
optimal solution via SMT quickly becomes intractable with
increasing candidate-set size; as can be seen in Sec V-C. For
this reason, we design a fast running heuristic for virtual gang
formation, which is shown in Algorithm 1.

At the high-level, the algorithm tries to group tasks with
similar WCET values so long as their combined shared resource
utilization is not too high; to make the virtual gang’s WCET as
small as possible while fully utilizing the cores. The algorithm
begins by sorting tasks in ∆T by their WCETs (line-4). It then
removes the longest task τi from the sorted queue and identifies
all tasks τj which can be paired with τi; under the following
constraints: 1) The combined core demand of τi and τj must
be less than m. 2) τi and τj must not be related by precedence
constraints (lines-10:12).

To check for precedence constraints, we introduce the notion
of the family of a node τi in our DAG which comprises all
nodes τk that are connected with τi in an ancestor or descendant
relationship i.e., family(τi) = {τk | τk ∈ ancestor(τi)∨ τk ∈
descendant(τi)}. With this, the precedence constraint check
between τi and τj becomes τj 6∈ family(τi) i.e., τj cannot be
paired with τi if it is a member of τi’s family.



Algorithm 1: Virtual Gang Formation Heuristic

1 Input: Candidate Set (∆T ), Number of Cores (m)
2 Output: Taskset comprising virtual gangs
3 function gang_formation(∆T , m)
4 pq = sort tasks by wcet(∆T )
5 virtualGangs = ()
6 while not empty(pq) do
7 τi = pq.pop()
8 fi = family(τi)
9 partners = ()

10 for τj ∈ pq do
11 if τi.h+ τj .h ≤ m ∧ τj 6∈ fi then
12 partners← partners ∪ {τj}

13 pqi = score partners(partners)
14 while not empty(pqi) do
15 τp = pqi.pop()
16 τi = merge(τi, τp)
17 pq.remove(τp)
18 update partners(τi, pqi)

19 virtualGangs← virtualGangs ∪ {τi}

20 return virtualGangs

In the list of potential corunners of τi, we score each task
τp based on the net advantage that can be obtained by pairing
it with τi using the following idea. The advantage obtained
by pairing τp with τi is equal to the length of τp since it
is the shorter running task in the potential virtual gang. The
disadvantage of this pairing is the potential increase in the
length of τi if τi.r+ τp.r > 1. The net advantage is then equal
to the difference between these two values; which we use to
score all the potential partners of τi (line-13).

Once all the partners are scored, we keep removing the
partner with the currently highest score from the partner list
and merge it with τi to create a virtual gang; until no more
pairing is possible (lines-15:16). In each step, we keep track of
the precedence constraint in the DAG from forming virtual gang
(since merging tasks can change the precedence constraint rela-
tionships in the DAG) and update the partner list to remove any
tasks that can no longer be paired due to the new precedence
constraint requirements (line-18). A task that is paired off is
removed from the priority queue as well. Once a virtual gang is
finalized, we put it in a separate list and start the process again
by selecting the next τi from priority queue until the queue is
empty. The final virtual gangs and the transformed DAGs of
the candidate-set are returned once the heuristic finishes.

V. SCHEDULABILITY ANALYSIS

The schedulability analysis of a taskset comprising virtual
gangs {w1, w2, · · · , wl} under the rate-monotonic priority as-
signment scheme [11] can be done by performing fixed point
iteration on the response time equation:

Rk+1
i = Ci +

∑
∀wj∈hp(wi)

⌈Rki
Tj

⌉
Cj , (1)

where: Rki is the response-time of wi at the k-th iteration;
Ci is the sum of the WCET of wi itself and all the virtual
gangs with the same period which come before wi in the linear
execution order; and hp(wi) represents the set of all virtual
gangs which have higher priority than wi (i.e., smaller period).
The taskset is deemed schedulable if for each wi, the final
response time Ri is less than the period Ti 1.

In the following, we compare schedulability results with vir-
tual gang formation with other parallel real-time task schedul-
ing approaches with synthetically generated tasksets.

A. Simulation Study

Taskset Generation: For the real-time taskset generation, we
first uniformly select a period Ti in the range [10, 1500]. For
each Ti, N tasks τi,j , where N is randomly picked from the
interval [2,m], are generated by selecting a WCET ci,j in the
range [T/10, T/5], a resource demand factor ri,j in the interval
[0, 1] and a parallelism level hi,j . The utilization ui,j of each
τi,j is then calculated using the relation: ui,j = (ci,j×hi,j)/Ti.
If ui,j is less than the remaining utilization for the taskset, ci,j
is adjusted so that τi,j fills the remaining utilization. Otherwise,
taskset generation continues until the desired level of utilization
is reached. We generate 1000 tasksets for each data point.

Precedence Constraints: Once a taskset is generated, we
model precedence constraint by adding edges among tasks,
which have the same period Ti, based on an edge probability
value P (e) which represents the average chance of an outgoing
edge from one task to another. To simplify the creation of a
DAG without explicitly checking for a cycle, we assume that
an edge can only exist between τi,j and τi,k if j < k; hence,
task τi,N has no outgoing edges. Under this scheme, the tasks
with smaller index values have potentially more neighbors, to
have an edge with, than the tasks with larger index values. To
have a balanced edge generation scheme, we divide P (e) value
by the number of potential neighbors of a task.

Taskset Types: Similarly to [7], we consider three types of
tasksets in our simulation, based on the allowed level of paral-
lelization hi,j for the tasks in the taskset. For a lightly-parallel
taskset, hi,j is uniformly selected in the range [1, d0.3×me].
For a heavily-parallel taskset, the value of hi,j is picked from
the range [d0.3×me,m]. Finally, for mixed taskset, hi,j is
selected randomly from the interval [1,m].

Scheduling Policies: We conduct two separate experiments to
understand the impact of virtual gang formation on system
schedulability. In the first experiment, we consider precedence
constraints among tasks using an edge probability P (e) = 0.25.
Due to the absence of an existing schedulability analysis for
gang tasks that can handle precedence constraints to the best
of our knowledge, we only compare schedulability with virtual
gangs in this experiment against RT-Gang. Concretely, we
consider three scheduling scenarios in this experiment. Under
the RT-Gang scheme, the unicore response time analysis using
Equation 1 is applied to calculate schedulability of the taskset
under the one-gang-at-a-time scheduling. For Virtual Gang

1It suffices to check the last virtual gang in the linear order for each period.



1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s Virtual-Gang (SMT)

Virtual-Gang (Greedy)

RT-Gang

(a) Lightly Parallel

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s

(b) Mixed

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s

(c) Heavily Parallel

Fig. 1: Schedulability plots for tasksets with precedence constraints (P (e) = 0.25) on 8 cores

(SMT), we first form virtual gangs from the given taskset
using the optimal SMT algorithm and then use Equation 1
to calculate schedulability of the new taskset comprising the
virtual gangs. Under Virtual Gang (Heuristic), we use the
heuristic from Sec IV-B to form virtual gangs and then calculate
the schedulability results.

In the second experiment, we assume that there are no
precedence constraints among the tasks i.e., P (e) = 0 which
allows us to consider more multicore scheduling policies for
comparing against virtual-gang scheduling. In this case, for
each taskset type, we calculate schedulability results under
four scheduling policies. We retain the RT-Gang and virtual-
gang (SMT) schemes from the first experiment. In addition,
we consider Gang-FTP policy and use the analysis in [7]
to calculate schedulability of the taskset under gang fixed-
priority scheduling. We also consider the Threaded scheme
which models the scheduling of parallel tasks under vanilla
Linux real-time scheduler, where the hi,j threads of each
task τi,j are independently scheduled. In this case, we assess
schedulability based on the state-of-the-art analysis for fixed-
priority scheduling of DAG tasks in [15]; here τi,j is simply
modeled as a DAG of hi,j nodes with the same execution time.

Interference Model: For each scheduling policy considered
in the second experiment, we calculate schedulability with
and without taking the interference between corunning tasks
into account. In virtual gang scheduling, the gang formation
algorithms already incorporate the interference model described
in Sec III-B in creating virtual gangs. For Gang-FTP, for
each τi,j , we enumerate all possible sets of co-running tasks
based on the remaining number of cores m − hi,j , and pick
the set with the maximal combined resource demand Ri,j
which we then use to scale the execution time ci,j of τi,j
by multiplying it with max(1, Ri,j). For Threaded, we assume
that each independently scheduled thread of τi,j has a resource
demand of ri,j/hi,j , and pick the m − 1 other threads (either
of the same or different task) with maximal demands. While
the described procedure for Gang-FTP and Threaded can be
pessimistic, we are not aware of any better mechanism to
safely account for the effect of resource interference under such
scheduling policies. Furthermore, we point out that results for
Threaded can still be optimistic, since we do not account for the
extra synchronization overheads that could be incurred when
scheduling threads independently rather than as a gang. Finally,

in creating plots without interference, we set the resource
demand of each task to zero and redo all our calculations (e.g.,
SMT virtual gang formation) before calculating schedulability.

B. Schedulability Results

Figure 1 shows the schedulability plots for the first exper-
iment with P (e) = 0.25 from our simulation for 8 cores
(m = 8). For all taskset types, virtual gang formation provides
noticeable improvement in schedulability as compared to RT-
Gang. Moreover, the virtual gang formation heuristic does a
good job in giving comparable performance to the optimal SMT
algorithm; in terms of total number of schedulable tasksets
under both schemes. It can also be seen from this figure that
the difference in the performance between the heuristic and the
optimal virtual gang formation decreases as the parallelization
level of the tasksets increases. This is expected since for lightly
parallel tasksets, there are much greater possibilities for virtual
gang formation which can be missed by the greedy local
optimization criteria of the heuristic.

When the tasksets comprise independent tasks (i.e., P (e) =
0), Fig 2 shows the schedulability results for the considered
scheduling policies of the second experiment. For lightly par-
allel tasksets, the Threaded and Virtual Gang schemes give
the best schedulability results, followed closely by the Gang-
FTP policy, if interference model is not used (dashed lines).
However, when interference is considered (solid lines), the
schedulability under Threaded and Gang FTP policies dete-
riorates rapidly as compared to the Virtual Gang scheme. This
is due to the fact that under the Virtual Gang scheme, only
the tasks of the same virtual gang can possibly interfere with
each other, while a lot more tasks must be considered in Gang-
FTP and Threaded. As expected, RT-Gang suffers the most for
lightly parallel tasks as it under-utilizes the cores.

For mixed and heavily parallel tasksets, the Virtual Gang
scheme outperforms the rest regardless whether interference is
considered or not. For these taskset types, RT-Gang performs
considerably better as well since a single parallel task can
utilize more cores in the platform, though it still lags behind
Virtual Gang scheme. On the other hand, Gang-FTP and
Threaded are significantly worse than the Virtual Gang scheme
and the RT-Gang for both mixed and heavily parallel tasksets.
This can be attributed to the analysis pessimism needed to
handle carry-in jobs in their schedulability tests [7], [15],
which becomes more pronounced as the parallelism of the tasks



1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s Virtual-Gang (No Interf.)

Virtual-Gang

RT-Gang

Threaded (No Interf.)

Threaded

Gang FTP (No Interf.)

Gang FTP

(a) Lightly Parallel

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s

(b) Mixed

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
ch

ed
u

la
b

le
 T

as
ks

et
s

(c) Heavily Parallel

Fig. 2: Schedulability plots for tasksets containing independent tasks (P (e) = 0) on 8 cores.

increases. Because both Virtual Gang and RT-Gang can use
exact unicore-based fixed-priority schedulability techniques,
they do not suffer from such analysis pessimism.

Finally, in all cases, interference impact becomes less promi-
nent as the parallelization of the taskset increases. This is
because with highly parallel tasks, the opportunity of getting
co-scheduled with other resource intensive tasks decreases,
leading to improved schedulability.

In summary, our simulation results show that the Virtual
Gang scheme significantly outperforms the rest when interfer-
ence is considered, and is competitive even when interference
is not considered.

C. SMT and Heuristic Gang Formation Runtime

In this experiment, we compare the time required to form
virtual gangs from a given candidate-set using the SMT and
the heuristic algorithms. We use the Z3 SMT solver [18]. We
vary the candidate-set size (N ) from 4 tasks up-to 9 tasks and
measure the time taken by each algorithm in generating virtual
gangs. For each N , we generate 75 candidate-sets and process
them through the gang formation algorithms. We retain all the
other simulation parameters from the first experiment in the
previous section. We plot the time taken by each algorithm for
all the candidate-sets in Fig 3. It can be seen that the runtime
of obtaining the optimal solution via SMT increases with an
exponential trend and quickly becomes unmanageable. The
runtime of the heuristic, on the other hand, remains relatively
stable (within 10-msec) for all candidate-set sizes.

VI. CONCLUSION

We introduced the novel concept of a virtual gang: a group of
parallel tasks that are statically linked and scheduled together.
We presented virtual gang formation algorithms and demon-
strated how to tightly bound the effect of shared resource in-
terference on COTS multicore platforms and how to transforms
the original, complex scheduling problem into a form that is
amenable to unicore schedulability analysis. In future, we plan
to demonstrate the practical benefits of our approach in a real
operating system with real-world workloads.

REFERENCES

[1] M. G. Bechtel and H. Yun, “Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention,” in RTAS, 2019.

4 5 6 7 8 9
Candidate Set Size (N)

10 4

10 3

10 2

10 1

100

101

102

103

104

Ru
nt

im
e 

(s
ec

on
ds

)

8hrs:10mins:2secsSMT

Heuristic

Fig. 3: Comparison of SMT and heuristic virtual gang forma-
tion runtime. In each box, the orange line represents the median
value. The box represents the interquartile range (Q2-Q3). The
lower and upper whiskers mark the 5 percentile and the 95
percentile values respectively.

[2] Certification Authorities Software Team, “CAST-32A: Multi-core Proces-
sors,” tech. rep., Federal Aviation Administration, 2016.

[3] D. G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits
for Fine-Grain Synchronization,” Journal of Parallel and distributed
Computing, vol. 16, no. 4, pp. 306–318, 1992.

[4] V. Berten, P. Courbin, and J. Goossens, “Gang Fixed Priority Scheduling
of Periodic Moldable Real-Time Tasks,” in RTNS, 2011.

[5] J. Goossens and V. Berten, “Gang FTP Scheduling of Periodic and
Parallel Rigid Real-Time Tasks,” in RTNS, 2010.

[6] S. Kato and Y. Ishikawa, “Gang EDF scheduling of Parallel Task
Systems,” in RTSS, 2009.

[7] S. Wasly and R. Pellizzoni, “Bundled Scheduling of Parallel Real-Time
Tasks,” in RTAS, 2019.

[8] A. Bhuiyan et al., “Mixed-Criticality Multicore Scheduling of Real-Time
Gang Task Systems,” in RTSS, 2019.

[9] H. Yun, R. Pellizzon, et al., “Parallelism-Aware Memory Interference
Delay Analysis for COTS Multicore Systems,” in ECRTS, 2015.

[10] W. Ali and H. Yun, “RT-Gang: Real-Time Gang Scheduling Framework
for Safety-Critical Systems,” in RTAS, 2019.

[11] N. Audsley et al., “Applying New Scheduling Theory to Static Priority
Preemptive Scheduling,” Software Engineering Journal, vol. 8, 1993.

[12] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in CVPR, 2005.

[13] S. Kato et al., “An Open Approach to Autonomous Vehicles,” IEEE
Micro, vol. 35, no. 6, pp. 60–68, 2015.

[14] A. Saifullah et al., “Multicore Real-Time Scheduling for Generalized
Parallel Task Models,” Real-Time Systems, no. 4, 2013.

[15] J. Fonseca, G. Nelissen, et al., “Improved Response Time Analysis of
Sporadic DAG Tasks for Global FP Scheduling,” in RTNS, 2017.

[16] H. Yun et al., “MemGuard: Memory Bandwidth Reservation System for
Efficient Performance Isolation in Multicore Platforms,” in RTAS, 2013.

[17] H. Yun et al., “PALLOC: DRAM Bank-Aware Memory Allocator for
Performance Isolation on Multicore Platforms,” in RTAS, 2014.

[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS,
2008.


