Homework #1 Solutions:

4.2 Refer to Fig. P4.2.
(a) Diode is conducting, thus
\[V = -3 \text{ V} \]
\[I = \frac{3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA} \]
(b) Diode is reverse biased, thus
\[I = 0 \]
\[V = +3 \text{ V} \]
(c) Diode is conducting, thus
\[V = +3 \text{ V} \]
\[I = \frac{3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA} \]
(d) Diode is reverse biased, thus
\[I = 0 \]
\[V = -3 \text{ V} \]

4.4
(a)
\[V_p = 5 \text{ V} \quad V_n = 0 \text{ V} \quad f = 1 \text{ kHz} \]
(b)
\[V_p = 0 \text{ V} \quad V_n = -5 \text{ V} \quad f = 1 \text{ kHz} \]

4.3
(c)
\[v_o = 0 \text{ V} \]
Neither \(D_1 \) nor \(D_2 \) conducts, so there is no output.
(d)
\[V_{p+} = 5 \text{ V} \quad V_{p-} = 0 \text{ V} \quad f = 1 \text{ kHz} \]
Both \(D_1 \) and \(D_2 \) conduct when \(v_I > 0 \)
(e)
\[V_{p+} = 5 \text{ V} \quad V_{p-} = -5 \text{ V} \quad f = 1 \text{ kHz} \]
\(D_1 \) conducts when \(v_I > 0 \) and \(D_2 \) conducts when \(v_I < 0 \). Thus the output follows the input.
(f)
\[V_{p+} = 5 \text{ V} \quad V_{p-} = 0 \text{ V} \quad f = 1 \text{ kHz} \]
\(D_1 \) is cut off when \(v_I < 0 \)
(g)
\[V_{p+} = 0 \text{ V} \quad V_{p-} = -5 \text{ V} \quad f = 1 \text{ kHz} \]
\(D_1 \) shorts to ground when \(v_I > 0 \) and is cut off when \(v_I < 0 \) whereby the output follows \(v_I \).
(h) \(v_o = 0 \text{ V} \)

The output is always shorted to ground as \(D_1 \) conducts when \(v_I > 0 \) and \(D_2 \) conducts when \(v_I < 0 \).

(i) \(v_o \)

\(V_{P+} = 5 \text{ V, } V_{P-} = -2.5 \text{ V, } f = 1 \text{ kHz} \)

When \(v_I > 0 \), \(D_1 \) is cut off and \(v_o \) follows \(v_I \).

When \(v_I < 0 \), \(D_1 \) is conducting and the circuit becomes a voltage divider where the negative peak is

\[
\frac{1 \text{ k}\Omega}{1 \text{ k}\Omega + 1 \text{ k}\Omega} \times -5 \text{ V} = -2.5 \text{ V}
\]

(j) \(v_o \)

\(V_{P+} = 5 \text{ V, } V_{P-} = -2.5 \text{ V, } f = 1 \text{ kHz} \)

When \(v_I > 0 \), the output follows the input as \(D_1 \) is conducting.

When \(v_I < 0 \), \(D_1 \) is cut off and the circuit becomes a voltage divider.

(k) \(v_o \)

\(V_{P+} = 1 \text{ V, } V_{P-} = -4 \text{ V, } f = 1 \text{ kHz} \)

When \(v_I > 0 \), \(D_1 \) is cut off and \(D_2 \) is conducting. The output becomes 1 V.

When \(v_I < 0 \), \(D_1 \) is conducting and \(D_2 \) is cut off. The output becomes:

\(v_o = v_I + 1 \text{ V} \)

4.6

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(X = AB, \quad Y = A + B \)

\(X \) and \(Y \) are the same for \(A = B \)

\(X \) and \(Y \) are opposite if \(A \neq B \)
4.9

(a) If we assume that both D_1 and D_2 are conducting, then $V = 0$ V and the current in D_2 will be $(0 - (-3))/6 = 0.5$ mA. The current in the 12 kΩ will be $(3 - 0)/12 = 0.25$ mA. A node equation at the common anodes node yields a negative current in D_1. It follows that our assumption is wrong and D_1 must be off. Now making the assumption that D_1 is off and D_2 is on, we obtain the results shown in Fig. (a):

$I = 0$
$V = -1$ V

(b) In (b), the two resistors are interchanged. With some reasoning, we can see that the current supplied through the 6 kΩ resistor will exceed that drawn through the 12 kΩ resistor, leaving sufficient current to keep D_1 conducting. Assuming that D_1 and D_2 are both conducting gives the results shown in Fig. (b):

$I = 0.25$ mA
$V = 0$ V

4.10:

(a) $5 \times \frac{10}{10 + 10} = 2.5$ V

$I = \frac{2.5}{5 + 20} = 0.1$ mA

$V = 0.1 \times 20 = 2$ V

(b) $V = 1.5 - 2.5 = -1$ V