Homework #1 Solutions: ## **4.2** Refer to Fig. P4.2. (a) Diode is conducting, thus $$V = -3 \text{ V}$$ $$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$ (b) Diode is reverse biased, thus $$I = 0$$ $$V = +3 \text{ V}$$ (c) Diode is conducting, thus $$V = +3 \text{ V}$$ $$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$ (d) Diode is reverse biased, thus $$I = 0$$ $$V = -3 \text{ V}$$ ## 4.3 (a) ## 4.6 | A | \boldsymbol{B} | X | Y | | |---|------------------|---|---|--| | 0 | 0 | 0 | 0 | | | 0 | 1 | 0 | 1 | | | 1 | 0 | 0 | 1 | | | 1 | 1 | 1 | 1 | | $$X = AB$$, $Y = A + B$ X and Y are the same for $$A = B$$ *X* and *Y* are opposite if $A \neq B$ (a) If we assume that both D_1 and D_2 are conducting, then V=0 V and the current in D_2 will be [0-(-3)]/6=0.5 mA. The current in the 12 k Ω will be (3-0)/12=0.25 mA. A node equation at the common anodes node yields a negative current in D_1 . It follows that our assumption is wrong and D_1 must be off. Now making the assumption that D_1 is off and D_2 is on, we obtain the results shown in Fig. (a): $$I = 0$$ $$V = -1 \text{ V}$$ (b) In (b), the two resistors are interchanged. With some reasoning, we can see that the current supplied through the 6-k Ω resistor will exceed that drawn through the 12-k Ω resistor, leaving sufficient current to keep D_1 conducting. Assuming that D_1 and D_2 are both conducting gives the results shown in Fig. (b): $$I = 0.25 \text{ mA}$$ $$V = 0 \text{ V}$$