Homework #1 Solutions:

4.2 Refer to Fig. P4.2.

(a) Diode is conducting, thus

$$V = -3 \text{ V}$$

$$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$

(b) Diode is reverse biased, thus

$$I = 0$$

$$V = +3 \text{ V}$$

(c) Diode is conducting, thus

$$V = +3 \text{ V}$$

$$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$

(d) Diode is reverse biased, thus

$$I = 0$$

$$V = -3 \text{ V}$$

4.3

(a)

4.6

A	\boldsymbol{B}	X	Y	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	1	

$$X = AB$$
, $Y = A + B$

X and Y are the same for

$$A = B$$

X and *Y* are opposite if $A \neq B$

(a) If we assume that both D_1 and D_2 are conducting, then V=0 V and the current in D_2 will be [0-(-3)]/6=0.5 mA. The current in the 12 k Ω will be (3-0)/12=0.25 mA. A node equation at the common anodes node yields a negative current in D_1 . It follows that our assumption is wrong and D_1 must be off. Now making the assumption that D_1 is off and D_2 is on, we obtain the results shown in Fig. (a):

$$I = 0$$
$$V = -1 \text{ V}$$

(b) In (b), the two resistors are interchanged. With some reasoning, we can see that the current supplied through the 6-k Ω resistor will exceed that drawn through the 12-k Ω resistor, leaving sufficient current to keep D_1 conducting. Assuming that D_1 and D_2 are both conducting gives the results shown in Fig. (b):

$$I = 0.25 \text{ mA}$$
$$V = 0 \text{ V}$$

