Homework \#1 Solutions:

4.2 Refer to Fig. P4.2.

(a) Diode is conducting, thus
$V=-3 \mathrm{~V}$
$I=\frac{+3-(-3)}{10 \mathrm{k} \Omega}=0.6 \mathrm{~mA}$
(b) Diode is reverse biased, thus
$I=0$
$V=+3 \mathrm{~V}$
(c) Diode is conducting, thus
$V=+3 \mathrm{~V}$
$I=\frac{+3-(-3)}{10 \mathrm{k} \Omega}=0.6 \mathrm{~mA}$
(d) Diode is reverse biased, thus
$I=0$
$V=-3 \mathrm{~V}$
4.3
(a)

(b)

4.6

A	B	X	Y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

$X=A B, \quad Y=A+B$
X and Y are the same for
$A=B$
X and Y are opposite if $A \neq B$
4.9

(a)
(a) If we assume that both D_{1} and D_{2} are conducting, then $V=0 \mathrm{~V}$ and the current in D_{2} will be $[0-(-3)] / 6=0.5 \mathrm{~mA}$. The current in the $12 \mathrm{k} \Omega$ will be $(3-0) / 12=0.25 \mathrm{~mA}$. A node equation at the common anodes node yields a negative current in D_{1}. It follows that our assumption is wrong and D_{1} must be off. Now making the assumption that D_{1} is off and D_{2} is on, we obtain the results shown in Fig. (a):
$I=0$
$V=-1 \mathrm{~V}$

4.10:

$$
\begin{aligned}
& I=\frac{2.5}{5+20}=0.1 \mathrm{~mA} \\
& V=0.1 \times 20=2 \mathrm{~V}
\end{aligned}
$$

(a)

(b)
(b) In (b), the two resistors are interchanged. With some reasoning, we can see that the current supplied through the $6-\mathrm{k} \Omega$ resistor will exceed that drawn through the $12-\mathrm{k} \Omega$ resistor, leaving sufficient current to keep D_{1} conducting. Assuming that D_{1} and D_{2} are both conducting gives the results shown in Fig. (b):

$$
\begin{aligned}
& I=0.25 \mathrm{~mA} \\
& V=0 \mathrm{~V}
\end{aligned}
$$

$$
V=1.5-2.5=-1 \mathrm{~V}
$$

(b)

