Homework 10 Solutions:

14.38 (a) Switch opens at time $t=0$, thus $v_{O}(0+)=0 \mathrm{~V}$. The capacitor then charge by a constant current I, thus
$I t=C v_{O}(t)$
$\Rightarrow v_{O}(t)=\frac{I}{C} t$
(b) For $I=1 \mathrm{~mA}$ and $C=10 \mathrm{pF}$ the time t for v_{O} to reach 1 V can be found as
$1=\frac{1 \times 10^{-3}}{10 \times 10^{-12}} t$
$\Rightarrow t=10^{-8} \mathrm{~s}=10 \mathrm{~ns}$
$14.40 V_{O H}=V_{D D}$
At $t=0, v_{I}$ goes low and the transistor turns off instantly, thus
$v_{O}(0+)=V_{O L}$
Now capacitor C charges through R towards $v_{O}(\infty)=V_{D D}$, thus
$v_{O}(t)=V_{D D}-\left(V_{D D}-V_{O L}\right) e^{-t / \tau}$
At $t=t_{P L H}$,
$v_{O}=\frac{1}{2}\left(V_{O L}+V_{O H}\right)=\frac{1}{2}\left(V_{O L}+V_{D D}\right)$, thus
$\frac{1}{2}\left(V_{O L}+V_{D D}\right)=V_{D D}-\left(V_{D D}-V_{O L}\right) e^{-t / \tau}$
$\Rightarrow t_{\text {PLH }}=0.69 \tau$
For $R=10 \mathrm{k} \Omega$ and we wish to limit $\tau_{\text {PLH }}$ to 100 ps then the maximum value that C can have is found from
$0.69 \times C \times 10 \times 10^{3}=100 \times 10^{-12}$
$\Rightarrow C=1.45 \times 10^{-14} \mathrm{~F}$
$=14.5 \mathrm{fF}$
14.63 $E=C V_{D D}^{2}$
$=10 \times 10^{-15} \times 1.8^{2}=32.4 \mathrm{fJ}$
For 2×10^{6} inverters switched at $f=1 \mathrm{GHz}$,
$P_{D}=2 \times 10^{6} \times 1 \times 10^{9} \times 32.4 \times 10^{-15}$
$=64.8 \mathrm{~W}$
$I_{D D}=\frac{P_{D}}{V_{D D}}=\frac{64.8}{1.8}=36 \mathrm{~A}$
14.65 Each cycle, the inverter draws an average current of
$I_{\mathrm{av}}=\frac{60+0}{2}=30 \mu \mathrm{~A}$
Since $I_{\mathrm{av}}=150 \mu \mathrm{~A}$, then the average current corresponding to the dynamic power dissipation is $120 \mu \mathrm{~A}$. Thus,
$P_{\mathrm{dyn}}=3.3 \times 120 \times 10^{-6}=396 \mu \mathrm{~W}$
But,
$P_{\mathrm{dyn}}=f C V_{D D}^{2}$
Thus,
$396 \times 10^{-6}=100 \times 10^{6} \times 3.3^{2} \times C$
$\Rightarrow C=0.36 \mathrm{pF}$
$14.67 t_{P L H}=30 \mathrm{~ns}, t_{P H L}=50 \mathrm{~ns}$
$t_{P}=\frac{1}{2}(30+50)=40 \mathrm{~ns}$
$P_{D \mathrm{av}}=\frac{1}{2}(1+0.6)=0.8 \mathrm{~mW}$
$P D P=0.8 \times 10^{-3} \times 40 \times 10^{-9}=32 \mathrm{pJ}$

