Homework 2

4.20, 4.28 (both use diode equation, and assume $n V_{\mathrm{T}}=0.025 \mathrm{~V}$), 4.40, 4.42, and 4.44
$4.20 I=I_{S} e^{V_{D} / V_{T}}$
$10^{-3}=I_{S} e^{0.7 / V_{T}}$
For $V_{D}=0.71 \mathrm{~V}$,
$I=I_{S} e^{0.71 / V_{T}}$
Combining (1) and (2) gives
$I=10^{-3} e^{(0.71-0.7) / 0.025}$
$=1.49 \mathrm{~mA}$
For $V_{D}=0.8 \mathrm{~V}$,
$I=I_{S} e^{0.8 / V_{T}}$
Combining (1) and (3) gives
$I=10^{-3} \times e^{(0.8-0.7) / 0.025}$
$=54.6 \mathrm{~mA}$
Similarly, for $V_{D}=0.69 \mathrm{~V}$ we obtain
$I=10^{-3} \times e^{(0.69-0.7) / 0.025}$
$=0.67 \mathrm{~mA}$
and for $V_{D}=0.6 \mathrm{~V}$ we have
$I=10^{-3} e^{(0.6-0.7) / 0.025}$
$=18.3 \mu \mathrm{~A}$
To increase the current by a factor of $10, V_{D}$ must be increased by $\triangle V_{D}$,
$10=e^{\Delta V_{D} / 0.025}$
$\Rightarrow \Delta V_{D}=0.025 \ln 10=57.6 \mathrm{mV}$
4.28 We can write the following node equation at the diode anodes:
$I_{D 2}=10 \mathrm{~mA}-V / R$
$I_{D 1}=V / R$
We can write the following equation for the diode voltages:
$V=V_{D 2}-V_{D 1}$
We can write the following diode equations:
$I_{D 2}=I_{S} e^{V_{D 2} / V_{T}}$
$I_{D 1}=I_{S} e^{V_{D 1} / V_{T}}$
Taking the ratio of the two equations above, we have
$\frac{I_{D 2}}{I_{D 1}}=\frac{10 \mathrm{~mA}-V / R}{V / R}=e^{\left(V_{D 2}-V_{D 1}\right) / V_{T}}=e^{V / V_{T}}$
To achieve $V=50 \mathrm{mV}$, we need
$\frac{I_{D 2}}{I_{D 1}}=\frac{10 \mathrm{~mA}-0.05 / R}{0.05 / R}=e^{0.05 / 0.025}=7.39$
Solving the above equation, we have
$R=42 \Omega$
4.40 Refer to Example 4.2.
(a)

(b)

$I_{D 2}=\frac{10-(-10)-0.7}{15}=1.29 \mathrm{~mA}$
$V_{D}=-10+1.29(10)+0.7=3.6 \mathrm{~V}$
(c)

$V=3-0.7=2.3 \mathrm{~V}$
$I=\frac{2.3+3}{10}=0.53 \mathrm{~mA}$
(d)

$I=0 \mathrm{~A}$
$V=-3 \mathrm{~V}$

4.42

(a)

$V=2-0.7$
$=1.3 \mathrm{~V}$
$I=\frac{1.3-(-3)}{2}$
$=2.15 \mathrm{~mA}$
(b)

4.44

(a)

(b)
(a) $I=\frac{2.5-0.7}{5+20}=0.072 \mathrm{~mA}$
$V=0.072 \times 20=1.44 \mathrm{~V}$
(b) The diode will be cut off, thus
$I=0$
$V=1.5-2.5=-1 \mathrm{~V}$

