Output Stage and power amplifiers (Ch. 12)
Sections: 12.5, 12.6, 12.9, 12.10

Bias a class-AB output stage either using diodes, or using V_{BE} multiplier.
Know each circuit configuration, design rules and their pros and cons.
Understand the basic operation principle and circuit diagram of class-D output stage
Class-D power amplifiers: operation principle, circuit configuration,
Why class-D output stage has high power efficiency?

Power transistors
Junction temperature limit, Junction thermal resistance, maximum allowed power
dissipation, BJT safe operation area.

Filters and tunable amplifiers (Ch. 17)
Sections: 17.1, 17.2, 17.3, 17.4, 17.5, 17.7, 17.11, and class notes on Bessel filter and frequency transformation (lowpass to highpass and bandpass)

Filter specifications:
Pass-band ripple (as small as possible),
Stop-band attenuation (as large as possible)
Transition between pass-band and stop-band (as quick as possible)

Polynomial representation of filter transfer functions: with clearly defined zeros and poles (easily to evaluate filter characteristics).

Butterworth filters: (maximally flat gain at low frequencies)
\[|T(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 (\omega/\omega_p)^{2N}}, \]
Locations of poles?
How to relate parameters to filter performance specifications?

Chebyshev filters:
\[|T(j\omega)|^2 = \begin{cases}
\frac{1}{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega/\omega_p)]} & \omega \leq \omega_p \\
\frac{1}{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega/\omega_p)]} & \omega \geq \omega_p
\end{cases} \]
Locations of poles?
How to relate parameters to filter performance specifications?

Bessel-Thomson filters:
Maximally flat group delay at low frequencies
No analytical expression, but there is an equation to find coefficients. A lookup table is usually used.
Comparison between Butterworth, Chebyshev and Bessel filters.

Transform from a low-pass filter into a high-pass or a band-pass filter

1st order filters: \(T(s) = \frac{a_1s + a_0}{s + \omega_0} \)

Low-pass, high-pass and all-pass (not possible to make band-pass).

2nd order filters (Biquad): \(T(s) = K \frac{k_2s^2 + k_1(\omega_0/Q)s + k_0\omega_0^2}{s^2 + (\omega_0/Q)s + \omega_0^2} \)

Low-pass: \(k_0 = 1, k_1 = 0, k_2 = 0. \)
High-pass: \(k_0 = 0, k_1 = 0, k_2 = 1. \)
Band-pass: \(k_0 = 0, k_1 = 1, k_2 = 0. \)
Notch filter: \(k_0 = 1, k_1 = 0, k_2 = 1. \)

\(\omega_0 \): resonance frequency
\(B = \omega_0/Q, \) 3-dB bandwidth (for band-pass or notch filters)

Poles: \(s_{1,2} = -\frac{\omega_0}{2Q} \pm j\omega_0 \sqrt{1 - \frac{1}{4Q^2}} \), Damping rate of resonance: \(\sigma = -\frac{\omega_0}{2Q} \).

1st and 2nd order filters are fundamental building blocks to make more sophisticated filters.

All filters can be expressed in polynomial form according to the locations of zeros and poles. Then a transfer function can always be decomposed into a combination of 1st and 2nd order functions. So, biquad (2nd order) filter is a fundamental building block with major parameters: \(\omega_0 \) and \(Q \).

How to realize biquad filters:
Traditional way: use RLC circuit
IC circuit: avoid using inductors, but use more op-amps.
Two-integrator-loop, Switched-capacitor filter