Problem 10 solution

1. There is an optical pre-amplifier in an optical receiver before the photodiode. The input optical power to the optical amplifier is $P_{in} = -20\text{dBm}$, and the optical amplifier has a 6dB noise figure. Other parameters are, operation temperature $T = 300\text{k}$, load resistance $R_L = 50\Omega$, photodiode responsivity $\mathcal{R} = 0.9\text{A/W}$, and the operation wavelength $\lambda = 1550\text{nm}$.

(a) If the gain of the optical amplifier is $G = 30\text{dB}$, please find the noise power spectral densities of thermal noise, shot noise and signal-ASE beat noise at PD output.

(b) What is the required optical gain of the amplifier so that signal-ASE beat noise is 10dB higher than the thermal noise after photo-detection?

2. For a semiconductor optical amplifier (SOA) with 25dB peak optical gain, if both end surface have the same power reflectivity R, what is the maximum R allowed so that the maximum gain ripple is less than 1dB near the peak gain wavelength?

3. At $\lambda = 1548\text{nm}$ wavelength, the emission and absorption cross-sections of an erbium-doped fiber (EDF) are $\sigma_e = 1\times10^{-24}\text{m}^2$ and $\sigma_a = 0.7\times10^{-24}\text{m}^2$, respectively. Erbium doping density of this EDF is $N_T = 7.5\times10^{24}\text{m}^{-3}$, and the confinement factor is $\Gamma = 0.1$.

(a) Please find the emission and absorption rate in dB/m for this EDF.

(b) If the length of the EDF is $L = 2\text{m}$, and the pump power is strong enough so that the carrier inversion is complete (that is: $N_2 = N_T$, $N_1 = 0$), what is the small-signal optical gain at 1548nm wavelength?

4. An EDFA originally has an optical gain of $G = 25\text{dB}$ and a noise figure $F = 5\text{dB}$ at a certain wavelength. Neglect gain saturation effect.

Now there is an addition 3dB loss associated with the EDFA. This forms an "extended EDFA" as illustrated below.

(a) If the 3dB loss at the input side of the original EDFA, what is the noise figure of the extended EDFA? (Hint: use noise figure definition)

(b) if that 3dB loss is at the output side of the EDFA, then what is the noise figure of the extended EDFA? Please explain.