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Abstract: Direct discrimination of FM and FSK 
optical signals using injection-locked DFB semi- 
conductor lasers is analysed. The demodulation 
eficiency is found to be independent of the optical 
injection level in the steady state. However, the 
optical injection level is important in determining 
the dynamic response. There exists an optimum 
optical injection rate to achieve the highest 
demodulation speed. The noise analysis revealed 
that the signal to noise ratio of this method is of 
the same order as that of the passive interfer- 
ometer demodulation method. 

1 Introduction 

Recently, it was confirmed, both experimentally and 
theoretically, that the stable locking band of a distributed 
feedback (DFB) semiconductor laser, in the configuration 
of external optical injection locking, is symmetrically 
centred around the frequency of the free-running slave 
laser (SL) in the low optical injection level. The variation 
of the junction voltage was measured to be almost lin- 
early related to the frequency detuning throughout the 
locking band within the unconditionally stable locking 
regime [l, 2, 31. This special property of DFB semicon- 
ductor lasers permits a simple method to directly 
demodulate the frequency-modulated (FM) optical signal. 
The first detailed experimental demonstration of this 
method was recently performed by H. Nakajima [ 3 ] .  The 
reported results are promising because the method allows 
the demodulation of optical FM signals directly and 
without the interferometer. 

The purpose of this paper is to present a theoretical 
analysis of injection-locked DFB semiconductor lasers 
used as discriminators for FM and FSK optical signals. 
The static solution of the rate equation reveals that the 
FM demodulation efficiency is independent of the optical 
injection level in the steady state. However, the optical 
injection level is important in determining the dynamic 
response. Both a small-signal analytical study on FM 
optical signal demodulation and a large-signal numerical 
simulation for FSK optical signal demodulation are 
described. The noise analysis indicates that the signal-to- 
noise ratio of the present method is in the same order as 
that of the passive interferometer demodulation method. 
Some limitations are pointed out and a parameter opti- 
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misation is outlined. The limitations imply that the 
advantages claimed for this method may not be as great 
as had hitherto been thought [ 3 ] .  

2 Small-signal analysis 

In DFB semiconductor lasers, the side longitudinal- 
modes are highly suppressed by the distributed grating, 
so that the theoretical analysis can be based on the fol- 
lowing well known single-mode Van der Pol equation 
and an equation for the carrier number [ 4 , 5 ]  : 

dE(t)/dt  = [ - io (N)  + (G(N,  I )  - 1/rp)/2]E(t)  

Ei(t)/Ti + FE(t) (14 

(lb) 
where E(t) = 1’” exp { - i [wt  - @I} is the normalised 
electric field of the slave laser and E,@) = 
1:” exp [ - i w , t ]  is the normalised field injected from the 
master laser (ML). I is the field intensity of SL normal- 
ised to the photon number inside the active cavity and I, 
is the intensity coupled from ML. N ( t )  is the carrier 
number, G ( N ,  I) = G A N  - N o )  + G,I  is the material 
gain, G, the differential gain, G, the gain saturation coef- 
ficient and N o  the carrier number for transparency. T,, is 
the photon lifetime, the angular frequency is o ( N )  = os 
+ (a/2)GN A N  where A N  = N - N ,  and w, = o(N,).  w, 

and N ,  are the steady state resonance angular frequency 
and carrier number of SL, respectively, without optical 
injection. As the gain nonlinearity is included in this 
paper, the carrier number is not clamped at its threshold 
value when the laser operates above threshold. Therefore, 
we will use the steady state values such as N ,  and I, for 
the expansion in the calculation. o, and o are the 
angular frequencies of ML and SL, C is the carrier injec- 
tion rate, @ is the phase of the injection locked laser field, 
a = - 2(Sw/SN)/(SG/SN) is the linewidth enhancement 
factor. T ,  is the spontaneous lifetime of SL and 1/ri is the 
coupling constant which can be approximated by 2nL/c 
with L the cavity length, n the refractive index and c the 
light speed [SI.  F d t )  and F d t )  are the Langevin noise 
terms. 

Recently, it has been revealed that the nonuniform 
longitudinal intensity distribution, and thus the spatial 
hole burning effect, may play an important role in deter- 
mining the linewidth and tunability [ 6 ]  in DFB semicon- 
ductor lasers. In principle, the longitudinal intensity 
distribution is determined by the KL-product, the phase 
of the grating and other cavity parameters which are dif- 
ferent depending on the type of DFB laser. In this paper 
however, the mean-field approximation is used for sim- 
plicity. The major difference between FP and DFB lasers 

dN(t )d t  = C - N(t) / r ,  - G ( N ,  I )  I E(t) 1’ + FN(t )  
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considered here is the single longitudinal mode operation 
of the DFB laser. 

In the stable locked state, the frequency of the SL is 
locked to that of the ML so that the stationary solutions 
of eqn. 1 are [4] 

( 2 4  

(2b) 

where A o  = w - o, is the frequency detuning and AG = 
G - 1 / t p .  p = (I l/l)l/'/~i is the normalised optical injec- 
tion level. 

Since Au = p A N ,  where Au is the voltage measured 
at the loading resistor and p is a constant related to the 
laser wavelength and the electric circuits [7], without loss 
of generality, we only consider the carrier number varia- 
tion A N  in the following for simplicity. The stationary 
carrier number variation caused by the optical injection 
is easily obtained as (see Appendix 8) 

AG = -2p COS @ 

A o  = p(sin @ - a cos @) 

- 2p COS @ [ G  + GI I] 
EGG, - Gl/TJ 

A N  = (3) 

From eqns. 2 and 3, the stationary FM demodulation 
efficiency can be obtained. The response against fre- 
quency detuning is not exactly a straight line, rather, it is 
the upper portion of an ellipse, similar to the AG against 
Aw curve in Reference 4. The demodulation efficiency in 
the stable locking range is 

A N  
Af - [(a sin @ + cos @)(GG, - GI/7J1 

4n sin @(G + GI I )  _ -  (4) 

where Af = Ao/2n. It is worth noting that in eqn. 4, 
AN/Af is independent of the optical injection ratio. 
However, as we will show later, this is not true when the 
dynamic response is considered. Quantitatively, in eqns. 3 
and 4, the terms containing GI are negligible compared to 
the terms with G, which indicates that the effect of non- 
linear gain saturation is not significant in the steady 
state. This effect is important, however, in damping the 
relaxation oscillation in the dynamic aspect as will be 
analysed later in this paper. On average, the demodu- 
lation efficiency of @ = 0 to @ = n can be approximately 
evaluated as 

AN/Af = 4n/(aGN) 

where both a and G, are the commonly used parameters 
in semiconductor lasers. It should be noticed that this 
approximation is valid only in the condition of a 9 1. 
When the value of a is very small, the above mentioned 
ellipsed will converge toward a circle, so as to make the 
small signal demodulation efficiency largely dependent 
on the central frequency of the signal. 

The dynamic property of small-signal FM demodu- 
lation can be obtained by using a standard treatment as 
given in Reference 8. This involves linearising eqn. 1 in 
the small deviations of 61, 6@ and 6N from their equi- 
librium values and performing the Fourier transform- 
ations (see Appendix 8). We get 

A(R) = I6N(R)/6w(R) I = I2pl  sin @ / D  1 ( 5 )  
with 

D =(jR - G,I i- RJI + p  cos @XjR + p  cos @) 

x (jn + GNI + l/zJ 
+ RiCp(cos @ + a sin @) + j@] 

+ p2 sin' @(jn + GNI + 1/73 
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where, RR = (GG,l)'/* is the relaxation oscillation 
angular frequency of SL, 6N(R)  and 6w(R) are the 
Fourier components of deviations of N(t) and w(t), 
respectively, from their equilibrium values. The small 
signal demodulation efficiency predicted by eqn. 5 is 
depicted in Fig. la for different optical injection levels at 
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Fig. 1 Small-signal FM demodulation response 
a For different optical injection levels 
b For ditferent relative phase detuning 
Where R is the optical power injection ratio defined by R = I , / l  

the centre of the stable locking range around B =  0, 
where the relative phase detuning is B = @ - tan-' a. In 
Fig. la, R = I , / l  is defined as the optical injection ratio. 
Although the demodulation eficiency is independent of 
the optical injection level in the stationary state as shown 
in eqn. 4, discrepancies are found at high modulation fre- 
quencies between the curves with different optical injec- 
tion levels in Fig. la. This explains the experimental 
observation in Reference 3 where this phenomenon was 
ascribed to the residual intensity modulation. When the 
optical injection is low, the 3 dB frequency bandwidth is 
determined by the half-locking-bandwidth. Alternatively, 
when the injection is sufficiently high, the relaxation 
oscillation is more pronounced and sets an upper limit to 
the optical injection level. This limitation can be approxi- 
mately evaluated as l / ~ ~  = l/r, + (G,  - G,)I + RJI 
+  COS @ - tl sin @) = 0 with z R  the equivalent 

damping time, where the relaxation oscillation is 
undamped [l ,  2, 111. When this dynamic limitation is 
taken into account, the range of optical signal frequency 
deviations (dynamic range) of the system Afm is limited to 
Afm < [l/z, + R,/I  + (G, G1)1]/2x. Because this 
maximum dynamic range IS independent of the linewidth 
enhancement factor a of the laser, increasing the optical 
power of the SL is an important way to enlarge the 
dynamic range without decreasing the demodulation efi- 
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Fig. 2 Results of large-signnl simulations for three diffirenr optical 
injection leuels 
The input optical signal are NRZ bipolar cades with a bit duration of 2 os AN is 
the relative carrier numbcr variation and 4 i s  the signal frequency deviation 
P R = -4748 
b R = -3748 
c R = -40.SdB 

found with respect to the zero relative phase detuning. 
The laser parameters used in this paper are G, = 5.6 

R, = 271 x 6 GHz, l / ~ ,  = 3 x 108sC1, a = 6, T~ = 8 
and R, = 1.28 x 10”. With these values, the uncondi- 
tionally stable locking regime is determined by about 
R < -37.8 dB. It is worthwhile to note that the non- 
linear gain saturation effect is the most important effect 
in determining the equivalent damping time 7, although 
it is negligible in the stationary analysis. To the applica- 
tion discussed in this paper, a semiconductor laser with a 
higher value of G, is preferred. The dynamic range Afm is 
mainly determined by the value of G, I. 

103 s-1, G, = 1.8 x 104s-1, G = 6.4 1011 s-1, 

9s 
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3 Large-signal simulation 

In practical digital optical communications, the FSK 
modulation format is often used. In this case, the injected 
optical frequency abruptly changes between two values 
corresponding to ‘0 and ‘l’, and the above small-signal 
analysis is no longer valid. A large-signal numerical simu- 
lation is therefore required. To this end, we integrate the 
nonlinear, complex field equation (eqn. I), time- 
dependently using the Fourth-order Runge-Kutta 
method. The injected frequency signal is switched 
between the two extremes, which is commonly referred to 
as the non-return-to-zero (NRZ) bipolar code. Typical 
results of numerical calculations are shown in Fig. 2. 

In the very low optical injection level, the switch-on 
(and switch-off) time is quite long as shown in Fig. 2a. 
This is because the locking bandwidth is too narrow. In 
Fig. 2b, the optical injection level is too high and the 
relaxation oscillation is less damped so that the switch 
time is determined by the time used to damp this relax- 
ation oscillation. Here the obvious difference between the 
switch-on and the switch-off time can be ascribed to the 
asymmetric property of zR with respect to @. Therefore, 
we can conclude that there exists an optimum value of 
optical injection level for a certain bit-rate to achieve the 
highest switch speed. 

Usually, the FM index and consequently, the fre- 
quency deviation, is limited by the stable locking range. If 
the frequency deviation of the input signal exceeds this 
locking range, the demodulated signal, in carrier density 
variation, is found to randomly oscillate between the two 
extremes. The maximum carrier number variation attain- 
able is determined by the optical injection level. Never- 
theless, in FSK digital transmission systems the 
minimum value of frequency deviation is related to the 
bit-rate B as A F  2 2B with AF, the signal frequency dif- 
ference between ‘0’ and ‘1’. The maximum bit-rate attain- 
able is thus limited by the locking bandwidth near the 
unconditionally stable upper limit [l] i.e. AF < Af,. 
With the laser parameters listed above and the optical 
injection level optimised, a switch on (off) time of less 
than Ins  can be obtained as shown in Fig. 2c. This is 
obtained by carefully adjusting the optical injection level 
and trading off the two drawback effects mentioned 
above (slow switching time at low optical injection and 
relaxation oscillation at higher optical injection). This 
speed is comparable to another application in which an 
injection-locked DFB laser was used to achieve optical 
PSK modulation [9]. 

4 Noise analysis 

Unlike the usual passive interferometric FM demodu- 
lation method, the injection locked DFB semiconductor 
lasers, used as the FM demodulation elements, exhibit 
some special noise properties. Our analysis, so far, was 
limited to the ideal case, i.e. without noise. In fact, optical 
signal intensity fluctuations will induce carrier density 
fluctuations and also variations of the demodulation effi- 
ciency in the higher frequency region. Moreover, the 
Langevin noise will be another source degrading the 
signal-to-noise ratio. 

As mentioned in the small-signal analysis, although 
the demodulation efficiency is independent of the injected 
optical intensity in the stationary state, it is intensity- 
dependent at higher modulation frequencies as shown in 
Fig. 1. The carrier number fluctuation directly caused by 
the signal intensity fluctuation can be simply evaluated 
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by using eqn. 3 as 

d N  -p COS @ [ G  + G,  I] _ -  - 
d l ,  IICGGN - Gd7J 

that A(R) zz A(0) = 4z/(aGN), P N  x Sd0)B. When the 
weak optical injection approximation is used SJO) = 
2R,/IG:. Also q = 1 can be assumed for the ideal case. 
Eqn. 8 can be thus simplified as (6) 

The demodulation efficiency variation caused by the ( s /N) ,  &ria2 

eqn. 5 ,  
signal intensity fluctuation can be obtained through - 

(W), 8(1 + a’) 
(9) 

d A ( a ) / d l i  = C1 - (aD/b~l~/DlA(a) (7) 
The sum of the above two effects could be used to evalu- 
ate the influence of the signal intensity fluctuation. 
However, for simplicity, in the following signal-to-noise 
ratio analysis only the Langevin noise source will be 
taken into account. 

The contribution of the Langevin noise to the degra- 
dation of the receiver signal-to-noise ( S / N )  ratio can be 
calculated through the rate equation (eqn. 1). Using the 
method given in Reference 10 and including the non- 
linear gain saturation effect, the power spectrum of the 
carrier density noise can be obtained as (see Appendix 8) 

= %{ I A 2 2  + l )  + I 
+ IAi iAz,  -A12A12A21I2 

+ 2Re[A22 A 3 1 ( A l l A 2 2  

- Ai,A,i)*lJ/I YI2 (8) 
where 

A , ,  = (jn - G ,  I + R,/I  + p cos @) 
A, ,  = 21p sin @ 

A,, = -p sin @/21 
A,, = j Q  + p cos @ 
A,, = aGN/2 

A,, = jQ + G N I  + l/z, 

A,, = -GNI 

A,, = G 

= - A 1 2 ( A 2 1 A 3 3  + A 3 1 )  

- 

In eqn. 8 the noise of ML has been neglected for simpli- 
city. This approximation is verified when we consider the 
low optical injection limitation in this method as empha- 
sised before. With a low optical injection, the noise spec- 
trum of SL is not influenced by the ML very much [lo]. 

The noise power is P N  = J: S&2) dR where B is the 
signal bandwidth. Consider that the flux of signal 
photons is related to the optical signal power by an addi- 
tional scaling factor hw, with h the Plank constant and w 
the optical frequency. In the ideal case, the frequency 
deviation of the FM modulated signal equals the stable 
locking bandwidth, the SIN of the analysed demodu- 
lation element can then be evaluated as 

(7) 

where B, = p(1 + a2)1’2/z is the locking bandwidth. In 
the conventional FM demodulation scheme, i.e. an inter- 
ferometer followed by a photodetector, the ideal signal- 
to-noise ratio is (SIN), = ql , / (hwB)  with q the 
photodiode quantum efficiency. The enhancement of the 
noise introduced by the semiconductor laser demodu- 
lation element can be obtained as 

To have a simple comparison, we can assume that B is 
much lower than the relaxation oscillation frequency, so 
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With the parameter values previously used, eqn. 9 gives a 
noise enhancement factor of approximately 0 dB. So that, 
using the injection locked DFB semiconductor lasers for 
FM signal demodulation, the signal-to-noise ratio is of 
the same order as the passive interferometer demodu- 
lation method. Physically, the signal gain provided by the 
locked SL is compensated by the Langevin noise gener- 
ated in it. 

5 Conclusion 

The direct discrimination of FM and FSK optical signals 
using injection-locked DFB semiconductor lasers has 
been analysed. The demodulation efficiency was found to 
be independent of the optical injection level only in the 
steady state, whereas, in the higher frequency regime this 
dependence is obvious. A narrow locking bandwidth at 
very low optical injection levels and the relaxation oscil- 
lation at relatively higher injection levels are the two 
important factors limiting the dynamic response of the 
demodulation. Both a small-signal analytical study and a 
large-signal numerical simulation show that there exists 
an optimum optical injection level to achieve the highest 
speed of response. Since the spontaneous emission does 
not contribute significantly to a laser operating well 
above threshold, the noise enhancement due to the 
injection-locked laser demodulation element is expected 
to be less than the laser amplifier demodulator [S, 121. 
The signal-to-noise ratio of the present method is found 
to be in the same order as that of the passive interfer- 
ometer demodulation method. 
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8 Appendix 

8.1 Derivation of eqn. 3 
When the nonlinear gain saturation is considered, the 
material gain G(N, I) can be linearised around its station- 
ary value without optical injection: 

G(N, I )  = G(N,, I J  + AG 
where 

G(N,, Is) = l/r, 
and 

AG = GNAN + GjAl  

with 

AN = N -  N, and AI = I - I s  

In the steady state with optical injection, the carrier 
number rate equation (eqn. lb) reads 

[C - N J T ~  - GI,] - AN(~/T* + GN I$  

- AI(G,I, + G) = 0 (13) 
Since the first term in eqn. 4, representing the operating 
condition of the free-running slave laser, is zero, we have 

AI = AN(l/r, + G~I,)/(GjI, + G) (14) 
Using eqns. 14, 12 and 2a, one can directly obtain eqn. 3. 

8.2 Derivation of eqns. 5 and 8 
Eqn. la can be separated into two equations, according 
to its real and imaginary parts, and then linearised 
together with eqn. lb in terms of small deviations around 
the equilibrium values, l ( t )  = I + 6l(t), @(t)  = @ + 6@(t), 
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N ( t )  = N + 6N(t), the following linearised equations can 
be easily obtained: 

d6l ( t ) /d t  = (GI I - RJI - p COS 4) 
x 6l( t )  - 2pl sin @6@(t) 

+ GN16N(t) + Fj( t )  ( 1 5 4  

- (aGN/2)6Nt) + F++(t) (15b) 

dd@(t)/dt  = (p sin @/21)6I(t) - p cos @6@(t) 

d6N(t)/dt  = -G6I(t) - ( l / ~ ~  + GN1)6@(t) + Fh.(t) (15c) 

where R, is the spontaneous emission rate [13]. 
The Fourier transformation is used to solve the linear 

system of equations (eqn. 15) by using the following defi- 
nition: 

fin) = (2x)-’ fit) exp (-iRt) dt Km 
Eqn. 15 then becomes 

A1,61(R) + A , ,  + A,,6N(R) = F,(R) (16a) 

A2,61(R) + -422 6@(R) + A23 6N(R) = F+(R) (16b) 

A3,6I(R) + A,, 6@@) + A,, 6N(R) = FAR) (16~)  
where 

A , ,  = (jn - G, I + R,/I  + p cos @) 
A,, = 2Ip sin @ 

A,, = - p  sin @/21 
A,, = jR + p cos @ 
A,, = aG,/2 
A, ,  = G 
A, ,  = 0 
A, ,  = jR + G, I + l/r, 

A , ,  -GNI 

The FM demodulation efficiency is determined by 
A(R) = I6N(R)/60(R) 1, whereas the frequency deviation 
6 4 R )  is related to the phase deviation &D(Q) by 
6 4 R )  = jRb@(R). In this way, we can get eqn. 5 to eqn. 
16 by setting all the Langevin noise terms to be zero. 

Eqn. 16 is similar to eqn. A3 of Reference 10 except for 
the inclusion of the nonlinear gain saturation term in 
eqn. 16 and neglecting the noise of ML for simplicity. 
Therefore, eqn. 8 can be obtained in the same way as that 
in Reference 10. 
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