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Nearly Degenerate Four-Wave Mixing in Distributed 
Feedback Semiconductor Lasers Operating Above 

Threshold 
Antonio Mecozzi, Alessandro D’Ottavi, and Rongqing Hui 

Abstract-Nearly degenerate four-wave mixing in distributed 
feedback semiconductor lasers above threshold is investigated 
theoretically and experimentally. The experimental results re- 
veal an almost symmetric amplification of probe and conjugate 
fields versus frequency with respect to zero pump-probe detun- 
ing, in contrast with observations in traveling wave amplifiers. 
The result of the theory, based on the coupled mode formalism, 
is a set of nonlinear differential equations which are solved in 
the mean field approximation. The theory is shown to match 
well with the experimental results when the effect of the nonlin- 
ear gain compression is taken into account. 

I. INTRODUCTION 
EGENERATE four-wave mixing (DFWM) and D nearly degenerate four-wave mixing (NDFWM) have 

attracted considerable attention in nonlinear optics. 
DFWM has found several important applications in phase 
conjugation, extensively used in real-time holography and 
adaptive optics [I], [2]. In these applications amplifying 
media are preferred in order to realize high-efficiency 
mixing. In this framework, colinear intracavity four-wave 
mixing in Fabry-Perot (FP) semiconductor lasers above 
threshold has been experimentally reported [3]-(61. In 
such lasers the feedback due to the cavity leads to a higher 
four-wave mixing efficiency and conjugate amplification 
up to 30-40 dB has been obtained. 

The theoretical approach to explain these experimental 
results has been qualitatively outlined by Bogatov et al. 
[7] by treating the semiconductor laser as an inverted two- 
level system. They put forward a calculation of the carrier 
rate equation coupled with nonlinear Maxwell equations 
to explain the interaction of two modes by the saturation 
induced index change. Recently, this theory has been ex- 
tended to the analysis of NDFWM process in the traveling 
wave semiconductor amplifier (TWA) [8] and several in- 
vestigations on NDFWM in TWA’s with different pump 
configurations have been published later on [9]-[ 111. 

This paper is devoted to give both an experimental and 
a theoretical analysis of NDFWM in a distributed feed- 
back laser (DFB) where, like in FP lasers, the FWM ef- 
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ficiency is enhanced by the cavity feedback mechanism. 
DFB lasers are particularly attractive since they oscillate 
in a single mode [123, which can act as a pump in FWM. 
In this configuration a probe signal slightly detuned with 
respect to the oscillating mode gives rise to a conjugate 
signal. The amplification of probe and conjugate waves 
in lasers above threshold is symmetric with respect to zero 
probe-pump detuning and the effective FWM bandwidth 
is mainly dependent on the relaxation oscillation fre- 
quency of the pump laser. These properties are different 
from those obtained in TWA’s where the probe amplifi- 
cation is typically asymmetric [8]-[ 113 and the effective 
FWM bandwidth is only determined by the carrier’s spon- 
taneous lifetime [8]. 

The paper is divided in seven parts. In Section I1 we 
present the experimental results. In Section I11 we de- 
velop a detailed theory of nearly degenerate four-wave 
mixing in semiconductor lasers above threshold based on 
the coupled-mode formalism. The main result of the the- 
ory is a set of coupled nonlinear differential equations for 
the spatial evolution of pump, probe and conjugate fields 
in the cavity. The effects of the nonlinear gain compres- 
sion and of the spatial hole burning are taken into ac- 
count. These effects, although present also in FWM of 
TWA’s, are particularly important in semiconductor la- 
sers above threshold because without them the predicted 
enhancement of the FWM efficiency at the laser reso- 
nance frequency would be much larger than actually ob- 
served. In Section IV we obtain an explicit expression for 
the input-output fields for the case in which the fields in- 
side the cavity can be assumed as uniform (homogeneous 
field approximation). In Section V the effect of noise on 
the amplification of probe and conjugate fields is intro- 
duced. In Section VI we compare theory and experimental 
results. In Section VI1 we report our conclusions. 

11. EXPERIMENT 
The experimental setup is shown in Fig. 1. Two iden- 

tical DFB-BH laser diodes with an emission wavelength 
of 1554 nm were used. Two diffraction limited lenses with 
a numerical aperture of 0.65 NA were used for the beam 
coupling and two optical isolators, inserted between the 
laser generating the probe wave (probe laser) and the laser 
generating the FWM (test laser), provided more than 50 
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Fig. 1. Experimental setup. 

dB of isolation. A half-wavelength plate was used to 
match the polarization of the two lasers. A variable den- 
sity filter was inserted between probe and test lasers in 
order to adjust the intensity of the probe beam. The beams 
from the two lasers are mixed on a beam splitter and sent 
to a monochromator for a coarse adjustment of the emis- 
sion wavelengths. Frequency matching and adjusting is 
accomplished by controlling the lasers' heat-sink temper- 
ature. The relative amplitude of the probe and conjugate 
beams was measured by means of a Fabry-Perot interfer- 
ometer placed behind the rear facet of the test laser. The 
evaluation of the optical power actually injected into the 
test laser cavity is very difficult. The use of the method 
proposed by Mukai and Yamamoto [ 131 for evaluating the 
injected optical power in FP semiconductor lasers be- 
comes very difficult for a DFB laser that works below 
threshold since the gain difference between the pass-band 
and the stop-band is too large. Initially, the coupled op- 
tical power was roughly estimated from the photocurrent 
induced in the test laser at zero bias. This method is quite 
easy but it is indeed only qualitative. A more accurate 
evaluation of the injected optical power was performed by 
using injection locking. This technique allows an accurate 
measurement of the linewidth enhancement factor a [ 141. 
The knowledge of the CY value allows to evaluate the in- 
jected optical wave power once the injection locking 
bandwidth is measured [ 151. The probe optical injection 
was maintained to about 0.02 pW. In such a condition, 
the probe induced depletion in the test laser is very weak 
and can be neglected when the pump-probe detuning is 
large. However, when the detuning approaches the injec- 
tion locking boundary, the pump depletion is still evident. 

Another problem arises when the test laser is biased 
relatively close to threshold so that, for moderate detun- 
ing, injection locking and partial injection locking are 
easily established. In order to avoid these unwanted ef- 
fects and focus the attention on FWM, the test laser was 
biased at relatively high levels. The experimental results 
obtained for two different values of the test-laser bias are 
shown in Fig. 2. It is worth to notice that the probe and 
conjugate wave amplification, 30 dB at least, is almost 
symmetrical with respect to the zero detuning. This result 
is different from that obtained in the TWA's where asym- 
metric probe amplification has been observed [8]-[ 1 11.  
This almost-symmetrical amplification is due to the effect 
of the cavity, where strong coupling between pump, 
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Fig. 2.  Measured probe (diamonds) and conjugate (squares) wave ampli- 
fications with the injected probe optical power of 0.02 p W  and the test laser 
biased at (a) I = 50 mA and (b) I = 70 mA. The test laser has the threshold 
current of 21 mA. 

probe, and conjugated wave occurs close to the resonance 
peak of the laser cavity. 

When the test laser is biased at low current, the probe 
and the conjugate amplifications are different and the ef- 
fective FWM bandwidth is relatively small as shown in 
Fig. 2(a). Increasing the bias current of the test laser, the 
difference in the amplification of probe and conjugate 
waves becomes less evident and- the laser relaxation res- 
onance moves at a higher frequency. This is illustrated in 
Fig. 2(b). As already shown in FP semiconductor lasers 
[4], [ 5 ] ,  systematic measurements indicate that the effec- 
tive FWM bandwidth in DFB semiconductor lasers work- 
ing above threshold depends mainly on the test laser re- 
laxation oscillation frequency, while in the TWA's, this 
effective FWM bandwidth is determined by the carrier's 
spontaneous lifetime as stated in several previous papers 
[8]-[ll]. Because of the dynamic damping effect, side 
wings corresponding to the relaxation oscillation become 
less pronounced increasing the pump power. The width 
of the plateaus on the wings can be larger than 1 GHz 
when the pump power is high. 

111. COUPLED WAVE EQUATIONS ANALYSIS 
The theory of FWM has been already developed by 

Agrawal in [8]. Even though the analysis in  that paper is 
general, most of the attention is devoted to the discussion 
of FWM in semiconductor laser amplifiers. In semicon- 
ductor lasers above threshold the FWM efficiency is mod- 
ified by the cavity and a more detailed theory is required. 
The reason for this need is readily understood. It is the 
optical modulation of the carrier density that leads to the 
FWM interaction. It is well known that the response to a 
current modulation of a semiconductor laser above thresh- 
old is enhanced close to the relaxation oscillation fre- 
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quency. The phase noise spectrum, which can be seen as 
the modulation response to the broad-band excitation due 
to the spontaneous emission, is also enhanced at the same 
frequency. An enhancement of the FWM efficiency at the 
resonance frequency is then expected, has been previ- 
ously observed [4], [5], and is confirmed by our measure- 
ments. It has been already pointed out that if we assume, 
in a rate equation approach, that the laser gain is only a 
function of the carrier density the enhancement of the re- 
sponse to a current modulation is higher than that actually 
observed [ 161, [ 171. The same has to be true for the en- 
hancement of the FWM efficiency. Different mechanisms 
have been proposed so far to explain this discrepancy. 
One is based on a modification of the material gain of a 
semiconductor laser by introducing an explicit depen- 
dence on the laser intensity. The physical origin of this 
term can be either spectral hole burning [ 181, [ 191 or car- 
rier heating [20], [21]. Another mechanism is based on 
the spatial hole burning induced by the cavity standing 
wave [22]. While these effects are expected to be impor- 
tant for semiconductor lasers above threshold, in semi- 
conductor laser amplifiers they are of second order be- 
cause their importance is restricted to a spectral region 
(tens of GHz) where the FWM efficiency of semiconduc- 
tor amplifiers is negligible. Since we are interested in this 
paper to FWM in semiconductor lasers above threshold, 
we will introduce both these effects in our model. 

In a semiconductor laser in which only the fundamental 
waveguide TE mode is present the evolution of the field 
E ,  which through the paper will be normalized such that 
IE l 2  is the power flux in units of W/m2,  is described by 
the wave equation 

where n is the refractive index, E ,  is the vacuum permit- 
tivity, and c is the velocity of light in vacuum. The total 
intracavity field is 

1 
E = ~ U ( X ,  y )  C E, ( z )  e -W (2) 

where U(x,  y )  is the transverse distribution of the TE 
mode. The subscript j = 0, 1, 2 correspond to pump, 
probe, and conjugate wave, respectively, whose frequen- 
cies obey the relationship 

(3) 

The matter polarization P = E,XE is expanded in the 
Fourier components at the same frequencies of the fields 

(4) 

4 J 

- U ,  = w, - w2 = Q 

P = ~ ( x ,  y )y (x ,  y )  C pJ ( z )  e -W 
J 

y(x, y )  being a step function assuming the value 1 in the 
active region and 0 elsewhere, introduced to account for 
the field-matter interaction only in the region where it is 
enhanced by the presence of the resonant medium. Strictly 
speaking, this expression does not hold when the matter 

susceptibility x is a function of the field, as in semicon- 
ductor lasers. We will discuss this issue later on. 

In a DFB laser, the grating introduces a longitudinal 
perturbation of the refractive index of period A. If we keep 
only the first term in the Fourier expansion we have 

A n  
2 

n(z) = n + - cos (2k~Z + 4) ( 5 )  

being kD = ?r/A the Bragg wavenumber, 4 is the grating 
phase, and A n  is the amplitude of the modulation. We 
enter expansions (2) and (4) into the wave equation ( l ) ,  
the eliminate the x-y dependence through multiplication 
by U*@, y )  and integration over the transverse coordi- 
nates. The result is 

where kj = Tzwj/c = wJ/ug are the wavenumbers, E is the 
group refractive index pertaining to the waveguide mode, 
ug is the group velocity in the waveguide, K = Anw/(4c) 
is the coupling coefficient of the DFB grating and the 
waveguide confinement factor r is defined as 

s dx s dY r(x,  Y )  IWx, Y) I2  

s s dY IU(x, Y) I2  

s dx s dY rl(x9 Y )  IUk Y)I2 

= 

(7) - - 
Aeff 

AeR being the effective area of the mode. 
In semiconductor lasers, the interaction field matter is 

realized through the carrier density N which, in a rate 
equation model, obeys the equation 

where I is the injection current, q is the electron charge, 
V is the active volume of the device, 7, is the lifetime of 
the minority carriers, g is the optical gain in cm-’, and D 
is the diffusion coefficient. 

We assume that the dependence of g on the carrier den- 
sity and on the field intensity is 

(9) 
where a is the gain coefficient, N ,  is the carrier density at 
transparency and E is the gain compression factor. The 
actual dependence of the gain on the field intensity is still 
object of controversy. We have used here a linearized 
expression which restrict ourselves to the case EIE l 2  << 
1 .  

We introduce expansion (2) into the rate equation (8). 
The time independent component of the electric field and 
the beating between pump and probe at the frequency dif- 
ference Q produce a time independent bias and a modu- 

g = u(N - N,)(1 - EIEI’) 
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lation at frequency Q of the carrier density. Both compo- 
nents are, strictly speaking, function of the transverse 
coordinates (x, y). The effect of diffusion is to average the 
carrier density over the transverse dimensions. If we as- 
sume that the transverse dimensions of the laser are 
smaller than the diffusion length (we are not considering 
here broad-area lasers) the dependence of the camer den- 
sity on x and y can be removed and we can write 

N = N ( z )  + [ A N ( z ) L i Q f  + A N * ( z ) e i Q f ] .  (10) 

The values of the time independent component of the car- 
rier density p and of the modulation A N  are found intro- 
ducing expansion (2) and (10) into the rate equation (8) 
and integrating over the transverse dimensions. If we con- 
sider the probe and conjugate fields as perturbations of the 
total intracavity field, we obtain to lowest order 

(1 + IE,('/P,)N = 17,/(qv) + NoIEo(' /P,  + r , D V 2 N  

(1 1) 

and to first order 

( 1  + (EoI2 /P ,  - iQr,)AN = C(N - No)(EoE: 

+ E,*E2) /P,  + 7,DV'AN 

(12) 
where P, is the saturation intensity 

The factor C is introduced phenomenologically to account 
for the nonplanewave nature of the waveguide mode and 
for the consequent nonperfect overlapping of the fields at 
different frequencies. The waveguide confinement factor 
r appears in (13) since we chose to refer the power flux 
( E  l 2  to the effective area of the mode. 

The spatial dependence of pump, probe and conjugate 
field is assumed to be 

E,(z) = 6 [AT (z )e ikDZ + AT ( ~ ) e - ~ ~ ' ~ ] .  (14) 

The intensity of the component at each frequency is mod- 
ulated with a beatlength which is half of the Bragg wave- 
number, and so is the carrier density. Even though the 
carrier density grating so generated is smoothed by carrier 
diffusion, since it has a periodicity of the order of the dif- 
fusion length 6, its effect cannot be neglected. As al- 
ready mentioned, in fact, the effect of the carrier grating 
in semiconductor lasers above threshold is to damp the 
resonant enhancement of the FWM efficiency at the laser 
resonance frequency. 

The effect of the standing waves generated by the coun- 
terpropagating fields on the carrier density is accounted 
for by expanding the coefficients of (10) as 

(15) N ( z )  = pb(z) + N+(z)e2'kDZ + N-(z)  e -2 ikDZ 

A N ( z )  = ANb(z)  + AN+(z)e2ikDZ + AN-(z)e-2 'kDZ 

(16) 

and taking into account the only relevant effect of diffu- 
sion to smooth the carrier density gratings, by approxi- 
mating 

v 2N(z)  = - 4 k 3 N + ( z )  eZtkDz + N-(z)  e - 2 i k D z ]  

V 2 A N ( z )  = - 4 k i [ A N + ( ~ ) ~ ' ~ ~ '  + A N - ( z ) e - 2 ' k D Z ] .  

The effect of diffusion can be handled by a perturbative 
approach. The amplitude of the z independent compo- 
nents is calculated in the limit of D = cx, by inserting 
expansion (14) for the pump field into equations (1 1) and 
(12), and neglecting all the terms due to the beating of the 
counterpropagating waves. The result is 

where 

Po = + IAJ2 

so = A,f(A?)* + A,(A,)* + (A,+)*& + (A,)*A;. 

(20) 

The coefficient of the spatial harmonic terms are then ob- 
tained by entering into (1  1) and (12) the full expressions 
(15) and (16) along with expansion (14) for the fields, and 
making use of the obtained results. Selecting in both sides 
of the equations the coefficients of the spatial harmonic 
functions with the same wavevectors, we find 

where 
1 

E = 1 + 4 L , k t  

Q, = A,f(A,)* (25) 

si = &)*AT + A,(A2')* (26) 

s, = (&)*A; + A:(A;)*. (27) 

Let us address now the interaction between the field and 
the active medium. The field-camer interaction is gov- 
emed by the relation 

P = E , X  E (28) 

where the matter susceptibility x = xr  + ixi is expressed 
as 
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nc 

** 
xr  = - - (a - E @  I E12)a(N - No). (30) 

CY being the Henry’s linewidth enhancement factor and 
is the nonlinear linewidth enhancement factor. Introduc- 
ing ( 2 )  and (10) into the definition of the polarization (28 )  
we obtain a decomposition of P in Fourier modes at the 
frequencies wJ. Without gain compression this decompo- 
sition has the form of (4), because the carrier density N 
is uniform on the transverse dimensions of the active re- 
gion so that P depends on the transverse coordinates only 
through the linear dependence on the field E .  If the gain 
compression factor E is different from zero, (4) does not 
hold rigorously because the gain saturation term in the 
polarization has spatial dependence I U(x,  y )  I2U(x, y ) .  
Yet, the deviation from (4) can be handled perturbatively 
by substituting the actual gain compression factor with an 
effective value which depends on the waveguide mode. 

Similarly to what already done for the field, we expand 
the Fourier amplitudes of the polarization in two counter- 
propagating components 

(31) 

The values of the P;’s  and PJ-’s are found by entering 
expansions of the carrier density (lo),  (15), and (16) and 
expansion of the field ( 2 )  into the definition of the polar- 
ization ( 2 8 ) ,  multiplying by U*@, y )  and integrating over 
the transverse dimensions. After some algebra we get 

pJ = pJ+,lkDz + p J - e - l k D Z .  

P,’ = EoAP1/’[a(Nb - Nu)& + a N + A J  

- E€,Bp,’/’U(Nb - N,)(P,  + / A ,  I’)A: (32) 

P :  = EoAP;/’[a(Nh - N,)A: + a N + A ,  

+ aANbA:  + a A N + A J  

- E E ,  B P : / 2  [2P,A: + 2A,’(A,)*A, 

+ 2A:A,(A,)* + (A,’)’(A:)*] (33) 
P :  = EoAPj/’[a(Nh - N,)A: + aN+A;  

+ aAiVbA,‘ + a A N + A , ]  

- E E , B P ; / ’ [ ~ P , A :  + 2A:(A,)*AA, 

+ 2ATA,(A,)* + (A,‘)’(A:)*] (34) 
where 

nc 
*U 

A = - - ( a + i )  (35) 

and the effective gain compression factor 

Introducing expansions (14) and (31) in (6) and apply- 
ing the slowly varying amplitude and the rotating wave 
approximations we get 

where 

Ak, = k, - kD, j = 0 ,  1 ,  2 (40) 

Introducing (32)-(34) into the coupled-mode equations 
(38)-(39) we obtain for the forward propagating compo- 
nent of the pump 

. dA2 
dz - 1 -  =: { a ,[I - C170A: 1’ + 21A, 12>1 + Ak, 

+ i.l,,>A,+ + { -a , t /U  + t P 0 )  

- A,+(A;)* + . }A ,  (41) 

and of the probe and conjugate fields 

dA f 
{ a o [ 1  - <Qj + 2Cq) IAo’ I’ - C(tQj - i _ L  = 

dz 

+ 217) I A ,  1 2 ]  + Akj + icx,,}AT 

+ { - ~ o  [Qj + k / ( I  + kpu) + 2 G l  

- (&)*A,’ + K}AJT 

+ { -aJQ; + C17) (A:)’} (A:-;)* 

+- { - a o [ Q j  + GtQj + 217)lA:A; } (A;-j)* 

(42) 

where 

(43) 
r -  

a, = - - - a ( N b  - N o ) ( a  + i) 
2 

,l 

p + i  
a + i  

7)  = EP, - 

(44) 

(45) 

The backward propagating components are obtained from 
the corresponding forward components with the substitu- 

substitutes the original value. The corresponding polar- 
izations labeled with - are found by the permutation (- 
* +). 

tion dz +- -dz  and (+ * -). In (41)-(46) a linear loss 
coefficient a,, has been introduced to account for all the 
linear losses, most due to scattering, of the waveguide. 
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Equations (41) and (42) are the equations of FWM in a 
diffusive gain medium under the linearization approxi- 
mation. All terms into (42) have a simple physical inter- 
pretation. The terms proportional to Qj are due to the mix- 
ing into the gain medium of waves with the same k vector: 
the frequency dependent response typical of a low-pass 
filter accounts for the non-instantaneous response of the 
medium, and the dependence on P, = I E, 12/Ps for its 
saturation. The terms proportional to Qj are due to the 
mixing of waves with opposite k vectors generating into 
the gain medium a periodic variation of gain and refrac- 
tive index, which is smoothed by the carrier diffusion. If 
we write Qj as 

one sees right away that these terms have the faster "dif- 
fusive" time response 7D = 7,t  and the higher saturation 
intensity Po = P , t  - I .  A fast response and high saturation 
intensity are as usual together with a weak nonlinearity: 
these terms are in fact proportional to ,$. The time T~ is 
related to the lifetime of the carrier grating. This is under- 
stood with the following arguments. First, for D = 0 we 
have 5 = 1 and hence T~ = 7,: the lifetime of the grating 
is as expected the same of the lifetime of the excited car- 
riers. Let us consider now the case ,$ << 1 ,  that is, from 
(24), 4D~,k2, >> 1 .  In this limit, 70 = 57, = 1/(4D@,) 
is the time t* at which the diffusion length 6 becomes 
comparable to [to be more precise, equal to 1 /(27r) times] 
the grating period 7r /kD.  This is the time at which the 
grating starts to be washed out. The only frequency in- 
dependent term due to spatial hole burning is the one due 
to the standing wave generated by the beating of the con- 
terpropagating components of the pump &(A,)*. This 
term can be regarded as an additional DFB grating in- 
duced by the action of the cavity standing wave on the 
camer density. This term is also not proportional to C 
because the beating is generated by waves with the same 
frequency and hence with the same mode profile. 

Finally, we discuss the terms due to the nonlinear gain 
compression factor. They are the terms proportional to 17 
and, through it, to E are due to the gain and refractive 
index gratings induced by the gain saturation. They are 
independent on frequency due to the assumed instanta- 
neous response of the gain saturation on the intensity vari- 
ations. When we take into account the finite time response 
of the nonlinear gain saturation, E and hence 17 is multi- 
plied by 

in the equations for A I  and A,,  respectively. The terms P,, 
and T , ~  are the saturation power (much larger than P,) and 
the time response of the nonlinear gain. For the interest- 
ing case of P,, -+ 03, (47) may be obtained assuming a 
delayed response of the nonlinearity with delay 7,!, with- 
out any hypotesis on the physical mechanism responsible 

for the nonlinear gain saturation. This may be accom- 
plished by substituting in (9), (29), and (30) the term 
E I E(t )  I with 

t - t' 
7,1 

dt' I E(t' )  1, exp - - . 

With the assumption of a finite time response of the non- 
linear gain saturation, (42) acquire a more symmetric 
form, and can be used also for highly degenerate FWM 
[23]. The value of the time response of the nonlinear gain 
depends on its the physical origin, 0.650 ps in InGaAsP 
if camer heating [24], of the order of 0.3  ps if spectral 
hole burning. 

Now, we connect the laser internal fields to the outside 
radiation. This is done by writing the boundary conditions 

E; (L)  = r2 Ej' (L)  - J1 - R2 Ej,;,(L) (49) 

E j ' ( 0 )  = r l E ; ( 0 )  + J1 - R I  E,,,(O) (50) 

Ej,,,,(O) = J1 - RI E y ( 0 )  + r;"E,,;,(O) (51) 

where 

(52) 

(53) 

and Rh and & are the power reflectivity and the phase of 
the facet h.  The square modulus of the input and output 
waves Ej,ouf and Ej, ;,, is normalized to give the output and 
input power at the left- and right-end sides of the wave- 
guide. 

IV. MEAN FIELD APPROXIMATION 
In general, in a laser above threshold the set of equa- 

tions (41)-(42) with the boundary conditions (48)-(53) 
calls for a numerical solution. Yet in the limit of R I  = R2 
= R + 1 when the threshold gain of the laser tends to 
zero, one can take advantage of the homogeneity of all 
the interacting fields to find analytical solutions. In this 
limit, where the mirror losses are negligible with respect 
to the scattering losses, one has 

Aj' ( z )  = A,: ( z )  = independent on z 

- - 5  j = o , 1 , 2  Jz (54) 

so that from the equation for the pump (41), by making 
use of (54) f o r j  = 0 and of A, # 0, we get 

+ Ak, + icysc + U = 0 ( 5 5 )  
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By making use of (54) and (55) the equations for the probe 
and conjugate fields (42) becomes 

{-a,[Qj + ~ ( 3 7 ~  C + lQj)] ( A , ( 2  + (-1)’-Ig] X Aj 

v g  

where the Qj’s are given by (44) with P, = 1 A, 1 2 .  In (56) 
the source term 

j = l  
(57) 

has been introduced to account for the injection of the 
only probe field from the outside. In (57) L is the laser 
length and the field Ai, is related to the field E l ,  in imping- 
ing upon the extemal facet of the laser by the relation 

(58) 
EI in 

Ain = JTeff(1 - R )  1 %/mi 
where qeff is a coupling efficiency. The solution of the set 
of equations (56) is 

(59) 

where 

(62) 

(63) 
C 

H2(Q) = a,* [QI + (371* + lQil] (A%)2. 

The output power per facet is given by 

IEj ,out12 = (1 - R)PsAeffIAj12. (64) 
If we take into account the finite time response of the gain 
compression term, the term q* in the previous equation is 
multiplied for Q;l given by (47) with P, = I A, 1 2 .  

The intensity of the probe and conjugate fields diverges 
for Q = 0. This divergence is unphysical because when 
the frequency of the probe approaches the pump fre- 
quency the laser starts running in injection locking. This 
regime is not described by our model which assumes that 
the field of the laser free running is not affected, to lowest 
order, by the injected radiation. 

Equations (56) and (64) have been obtained for lasers 
FP in the limit of high facet reflectivities. We have 
checked by direct integration of equation (41) and (42) 
that this approximation is a good one even for mirror re- 
flectivities R of the order of 0.32, if to the power \ A, l 2  is 
given the meaning of the average intracavity power. For 
DFB lasers, the shape of FWM efficiency obtained from 
(56) and (64) is still in very good agreement with the nu- 
merical analysis, even if the values of the calculated FWM 
response differ from those obtained numerically by a fac- 
tor, which is anyway independent on frequency. 

It is worth to notice that a result similar to (56) can also 
be obtained by assuming from the beginning the camer 
density and the fields as homogeneous. The equation for 
the carrier density is still, in this approach, given by (€9, 
without the diffusion term, and the equation describing 
the field-matter interaction is the usual rate equation for 
the carrier density which is familiar from the theory of the 
injection locking 

+ i(a - P E  1 El2)]  ) E  - K ~ E ~ , , , ,  exp ( - j i l t ) .  

(65) 
In this equation, K, is a coupling constant which relates 
the extemal input probe field with the intracavity field and 
y are the cavity losses. Expanding the internal field and 
the carrier density as in (2) and (10) respectively, and 
equating the coefficients of equal time harmonic terms, 
we obtain a result which, though similar to the already 
obtained result, yet has some differences with (56). First 
of all, the terms proportional to 4 due to the spatial hole 
buming induced by the counterpropagating waves are not 
present in the result of this simplified approach, and can- 
not be obtained by any model which neglects from the 
beginning the spatial inhomogeneity of the laser. Then, 
the factor 3/2 in front of 7~ is substituted with 1 in the 
result of the rate equation model. This difference arises 
from the fact that the “inhomogeneous” approach takes 
into account the presence of the grating of nonlinear gain 
saturation which is generated by the cavity standing wave, 
which is instead completely neglected by the simplified 
approach. 

In the particular case of 71 = 5 = 0, (59)-(63) acquire 
the more transparent form 
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where 

is the laser gain, sum of the threshold gain and of the 
scattering losses, and 

is the laser resonance frequency. A resonant enhancement 
of the FWM efficiency at the frequency WR, which is di- 
rectly proportional to the square root of the optical inten- 
sity of the laser, is predicted by this equations. They also 
show that the intensities of FWM signals are proportional 
to the factor (1 + c y 2 ) .  

Gain compression and/or carrier density grating smooth 
the resonance peaks of the FWM spectrum. The reason 
for this is clear, if one thinks about the origin of the re- 
laxation oscillations. When a fluctuation of the photon 
density is generated, this affect the carrier density, and 
hence the gain, with a delay due to the lifetime of the 
excited carriers. This generates oscillations of the carrier 
and photon densities, which are consequently smoothed 
when a fast dependence of the gain (nonlinear gain) or 
losses (carrier grating) on the field is introduced. 

Before discussing the result of the theory, and how it 
matches with the experimental results, we will address in 
the next section the effect on FWM of the finite linewidth 
of both pump and signal. The results of this section have 
been already published elsewhere [25], together with their 
experimental check. We will repeat here the very simple 

width of the fields. This means that we consider the effect 
on FWM of the low frequency content of the phase noise 
only, the same that gives rise to the linewidth of the fields. 
This component is much slower than the inverse of the 
beating frequency Q and consequently we can assume that 
the output fields A , @ )  and A2(Q) adiabatically follow the 
phase noise of signal and pump. 

To simplify the notations, let us write (65) and (66) in 
the formal way: 

(70) A , ( Q )  = F I ( Q ,  I A, 12)Ain 

A?(Q) = ~ 2 ~ 9  I 12) (A%12Ain (71) 

Introducing the phase noise of pump and signal they be- 
come 

A I @ ,  t)  = Fl(Q, 1 A, 12)Ainei"n(f) 

A?@, t )  = F ~ ( Q ,  I A, 1 2 )  (A;I2e - 2 i @ o ( r ) ~ i n  

(72) 

* (73) 

The field autoconvolutions write 

( A , ( Q ,  t + VA?(Q,  t )> = 1 ~ l ( n ,  I A,  1 2 )  I 2  I Ain I 2  
) (74) . ( e  i Iddt + T )  - dd0l  

theoretical analysis since the broadening of the conjugate 
line has important consequences on the interpretation of 
the exDerimenta1 data of the FWM response. as we will 

It is well known that the phase diffusion for low frequen- 
cies is a random walk of variance 

see later on. 

where the diffusion constant Dj is related to the linewidth 
by the relationship [26] 

(77) Avj = Dj/(4a) 

V.  EFFECT OF NOISE 
Equations (66) and (67) assume that both the pump and 

the probe are free of any noise disturbance. This is in 
general not the case because both pump and signal are 
affected by amplitude and phase noise, the latter being 
responsible for the finite linewidth of the field autocon- 

By using the property of the Gaussian processes 

( , i A [ + / ( f + T ) - 6 , ( ( f ) I )  = ,-A2D/lT1/2 (78) 
volution spectrum. We will assume in the following that 
the amplitude noise is negligible with respect to phase 
noise, a usual approximation when dealing with line- 

and from the independence of the phase noise of pump 
and signal we get 

widths. The effect o f  phase noise of pump and signal can 
be easily accounted for in our model, by substituting A, 

4,(t) and +in(t) are the pump and signal phase noise. This 
substitution is not quite rigorous, because equations (66) 

approximation when, as usual, the separation between 

( A , ( Q ,  t + T)A:(Q, r)) = 1 F ~ ( Q ,  1 A, 1 2 )  l 2  
and Ai, with A,e'@"(') and Aine1"In('), respectively, where 

and (67) are already in frequency domain, but is a good 

pump, signal and conjugate is much larger than the line- 

. I I 2e -Din I TI /2  (79) 

(A?(% + W 2 ( %  t ) )  = I F2(Q7 1 A ,  1 2 )  l 2  I A, l 4  
. l A i n  ( 2 e - 4 ~ ~ ~ ~ ~ ~ / 2 e - ~ , " ~ ~ ~ / 2  

(80) 
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Fourier transforming with respect to the slow time scale 
T we get the powei 

( I A d Q ,  412) = 

spectrum of A I  and A2:  

4aAv2 
w2 + (2nAv2)* 

where 

and w is the angular frequency deviation from the center 
frequency of the probe and conjugate. 

The linewidth of the probe output is the same of the 
input. The linewidth of the conjugate is much broader of 
those of pump and probe, and is very sensitive on the 
pump linewidth. The integral over all the “slow” fre- 
quencies is however independent on the linewidths, and 
is the same as the ideal case of absence of phase noise. 
Yet, the peak value of probe and conjugate in frequency 
domain is largerly affected by phase noise. In the special 
case of equal linewidths of pump and probe, the peak of 
the conjugate is five times lower than that of the probe, 
assuming that their total energies are the same. 

In an experiment, the broadening of the spectrum of the 
conjugate may lead to lose part of the energy contained 
in the wings of the spectrum if an interferometer is used 
in the measurement. This seems to be consistent with our 
experimental results. By simply inspecting Fig. 2(b), one 
realizes that the experimental points which refer to the 
conjugate can be practically superimposed to the corre- 
sponding ones relative to the probe by a constant shift in 
logarithmic scale. This implies a constant factor, in this 
case 1.5-2, between the probe and conjugate output 
power. This is exactly the expected behavior if a constant 
fraction of the conjugate power is lost in the measurement 
(note that pump and probe have roughly the same line- 
width in all the experimental points). When the pump laser 
is biased at higher currents its linewidth narrows, and the 
difference between probe and conjugate practically dis- 
appears [see Fig. 2(a)], as expected from (81)-(84). 

To give a quantitative evaluation of the effect of the 
noise in the experiment, we assume that the transmission 
of the interferometer is a Lorenzian centered at the peak 
of the probe or conjugate of width AV,. Multiplying (81) 
and (82) for the interferometer transmission and integrat- 
ing over all the frequencies, we obtain 

Avm 
AV, + A v ~ ‘  

In the experiment, AV, was around 600 MHz. If we as- 
sume Avin = AV, = 40 MHz, for the set of measurements 
with the lower injection current, we get that the measured 
conjugate intensity is only the 75 % of the total, while the 
measured probe intensity is the 94% of the total. We will 
use in the next section (85) and (86) to compare with the 
experimental results. 

VI. RESULTS 
In Figs. 3-5 we show the experimental results together 

with the theoretical FWM response. The value of the pa- 
rameters for the theoretical plots are listed in Table I .  
When no damping mechanisms are introduced, an evident 
enhancement of the FWM response close to the resonance 
peaks shows up. In Fig. 4 only the gain saturation is in- 
troduced and the resonant enhancement damps out. In Fig. 
5 no gain saturation is assumed (17 = 0), but the effect of 
the induced carrier grating is considered by assuming 5 
= 6 X ‘This is equivalent to a value of the diffusion 
constant D of 1 cm2/s. The relaxation oscillations are still 
damped, yet they are damped less compared to the case 
in which gain saturation is introduced. If we increase 5 
by assuming a lower value for the diffusion constant, the 
relaxation resonance peaks does not reduce significantly, 
at least for reasonable values for D. By increasing 5, in 
fact, the lifetime of the grating 7D = 57, also increases 
approaching 7,. The efficiency of the grating to damp out 
the relaxation oscillations consequently reduces since, as 
already mentioned, this efficiency is related to the pres- 
ence of gain, or loss, mechanisms much faster than the 
carrier dynamics. 

From the above results, it seems that our set of mea- 
surements is better described by assuming that the gain 
saturation rather than the carrier grating damps the reso- 
nant enhancement of the FWM efficiency at the relaxation 
oscillation frequency. 

VII. DISCUSSION 
It is worth to compare our results of FWM in DFB 

semiconductor lasers with the results already published of 
FWM in amplifiers and FP lasers. Our data show a high 
degree of symmetry of the probe amplification for positive 
and negative pump-probe detunings. Although we are not 
aware of published results showing the probe amplifica- 
tion for both sides of the pump-probe detunings in FP la- 
sers ([4] and [5] presents only one side of the spectrum, 
while [6] does not report any investigation of the FWM 
response versus frequency), our theory predicts this be- 
havior for FWM of lasers above threshold no matter if 
they are FP or DFB. 

Our experimental data show that probe and conjugate 
outputs have almost the same power level over the whole 

(85) range of measured frequencies. The experimental data of 
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Fig. 3. Experimental results (diamonds for probe and squares for conju- 
gate waves) together with the theoretical FWM response (solid line) when 
no mechanisms to damp the FWM response are present. In the upper part 
of the figure the test laser is biased at 50 mA, in the lower part at 70 mA. 

4.5 3 1  

I I I 
-5 0 5 -5 0 5 

Detuning (GHz) 

Fig. 4. Experimental results (diamonds for probe and squares for conju- 
gate waves) together with the theoretical FWM response (solid line) when 
only the gain saturation is taken into account. In the upper part of the figure 
the test laser is biased at 50 mA, in the lower part at 70 mA. 

FWM in FP lasers reported in [4] and [5] show at very 
low frequency detunings (less than 1 GHz) the output 
power of the conjugate much lower than the output power 
of the probe. We do not have any data for frequency de- 
tunings that low. Yet, such a difference of power levels 
is not predicted by our theory. A possible cause for the 
discrepancy is the perturbative approach we followed in 
our theory, which fails when the probe and conjugate 
powers becomes comparable to the pump power. Another 
reason might be the broadening of the conjugate line that 
lowers the detected conjugate power if the resolution of 
the Fabry-Perot used to resolve the fields is too high. A 
high resolution is necessary when the conjugate line is 
very close to the pump line, that is for very low values of 
the detunings. The data for very low detunings reported 
in literature [4], [5] might be consequently affected by 
large errors. Both our data and the data reported in liter- 
ature for FP lasers [4], [5] show at higher detunings (larger 
than 1 GHz) probe and conjugate outputs almost equal. 

I I 
-5 0 5 -10 - 5  0 5 

Detuning (GHz) 

0 

Fig. 5 .  Experimental results (diamonds for probe and squares for conju- 
gate waves) together with the theoretical FWM response (solid line) when 
the effect of the diffusion is considered. In the upper part of the figure the 
test laser is biased at 50 mA, in the lower part at 70 mA. 

TABLE I 

Fig. 3 Fig. 4 Fig. 5 

C 1 1 I 

Po 

N 6 6 6 
up (m/s) 

1.8/2.7 1.8/2.7 1.8/2.7 
0.3 . IO-' 

0.75 . 10' 0.75 . 10' 0.75 . IO' 
7% (s) 0.3 . lo-' 0.3 . IO-' 

c 
0 0 0 

€ 0 1.5 . lo-'  0 
P 

In general, we do not see any striking difference be- 
tween the experimental results of FWM in FP and DFB 
lasers. Traveling wave equations (41) and (42) take into 
account the index grating. Yet the index grating has no 
effect in the final solutions (59)-(64) since those solutions 
are obtained with the homogeneous field approximation. 
We do not believe, however, that the effect of the grating 
is very important. It only provides the phase matching 
conditions for counterpropagating waves at the same fre- 
quency; it affects the FWM response by only changing the 
field distributions of the interacting fields, beside giving 
rise to the cavity effect which is, however, present also in 
FP lasers. Obviously, a static grating cannot contribute to 
the energy exchanges between waves at different frequen- 
cies, as dynamic gratings do. 

VIII. CONCLUSION 
Experimental and theoretical analysis on nearly degen- 

erate four-wave mixing in a distributed feedback semi- 
conductor laser working above threshold have been re- 
ported. Measurements at two different values of bias of 
the test laser show that the lineshape of both the probe 
and the conjugate waves are symmetric with respect to the 
zero pump-probe detuning. The effective FWM band- 
width is mainly determined by relaxation oscillation fre- 
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quency of the laser and it increases when the bias is in- 
creased. A theoretical analysis has shown that the model 
of population pulsation of [6] is adequate also for FWM 
of semiconductor lasers above threshold, when the effects 
of the nonlinear gain compression and of the spatial hole 
burning are properly taken into account. The effect of the 
modulation of the carrier density and the spatial hole 
burning cannot explain alone the measured FWM spectra 
close to the laser relaxation frequency. Good agreement 
between theory and experiment has been obtained when a 
nonlinear gain compression term is introduced in the 
model and the effect of the phase noise of the laser is taken 
into account. 
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