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Experimental and Theoretical Study on the
Symmetries of Orthogonally Polarized

Optical Signals
William Shieh, Rongqing Hui, Xingwen Yi, and Graeme Pendock

Abstract—We perform theoretical analysis and systematic mea-
surement of the degree-of-polarization and eye-closure penalty
for optical signals with orthogonal polarizations. Both the the-
ory and experiment show that the symmetry of the DOP is
maintained for the orthogonal polarizations under both first and
higher-order PMD, whereas the symmetry of eye-closure penalty
is broken under second-order PMD. As a result, an orthogonal
polarization pair can have large disparity of eye-closure penalty
despite an identical degree-of-polarization. We also demonstrate
a novel approach to estimate the maximum eye-closure penalty
asymmetry with three orthogonal polarizations on the Poincare
Sphere.

Index Terms—Optical communication, optical dispersion, opti-
cal fiber polarization, optical fibers, polarization mode dispersion.

I. INTRODUCTION

POLARIZATION-MODE-DISPERSION (PMD) has be-
come an inevitably active and practical topic as the optical

transmission systems have advanced rapidly toward ultra-long
reach of several thousand kilometers and ultra-high channel
speed of 40 Gb/s and beyond. The PMD distorts optical signal
waveform and places a fundamental limit on the channel speed
[1]–[2]. Additionally, under the influence of PMD, the optical
signal will experience polarization dispersion and its degree-
of-polarization (DOP) will degrade. Such DOP degradation
has been proposed as an indicator to monitor fiber PMD [3]–
[4]. On the other hand, when an optical signal traverses a PMD
impaired medium, it has been rigorously proved that despite
the effect of depolarization, the Stokes vectors of two input
principal orthogonal polarizations will be an inversion of each
other at the output, i.e., the directions of the Stokes vector are
opposite while their magnitudes are equal [5]. In other words,
the DOPs (the magnitude of the normalized Stokes vector)
of the two principal orthogonal polarizations are symmetric
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for any-order of PMD. In this paper, we extend the theory to
any arbitrary orthogonal polarization pair. Additionally, there
is no systematic experimental verification for this symmetry
theory in the open literature. Furthermore, it has been shown
that the second-order PMD induced system impairment can
be considered as the interference between the second-order
PMD vector and fiber chromatic dispersion or phase chirp
[6]. The same principle was successfully applied to the higher-
order PMD compensation [7]. The existence of second-order
PMD will consequently break the symmetry for the system
penalty, i.e., the system penalties are no longer identical for
two orthogonal polarizations, because the penalty is dependent
on whether the input polarization is in- or out-of- phase
with the second-order PMD vector [6]. In this paper, we
first start with the theoretical derivation extending the DOP
symmetry theory to any arbitrary polarization pairs. We then
derive a close-form formula for system penalty asymmetry
for an orthogonal polarization pair in the presence of second-
order PMD and chromatic dispersion. We then perform a
systematic experimental study on the symmetry for orthogonal
polarizations for both DOP and system penalty. We find
that the symmetry of DOP is maintained for the orthogonal
polarizations under both first and higher-order PMD, whereas
the symmetry of eye-closure penalty is broken under second-
order PMD. We believe that this is the underlining justification
for why DOP does not precisely predict the system impact of
PMD when higher-order PMD is present. Optical signals with
orthogonal polarizations would have the same DOP, but their
system penalties may be quite different. In comparison, the
RF power derived from the optical signal correlates very well
with the system penalty, and is subsequently better suited as
a monitor signal. We also demonstrate a novel approach to
estimate the maximum eye-closure penalty asymmetry using
three orthogonal polarizations on the Poincare Sphere.

II. THEORETICAL BACKGROUND

A. Degree of Polarization

A time dependent electric field ψo (t) for a pulse at the
output of the fiber can be generalized as a Jones vector:

ψo (t) =
(
c (t)
d (t)

)
(1)

The associated Stokes vector of the optical signal,
−→
S can
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be formally expressed as

−→
S ≡

∞∫
−∞

−→
S o (t) · dt (2)

where
−→
S o (t) is the Stokes vector in time domain given by

−→
S o (t) = ψ+

o (t) · −→σ · ψo (t) (3)

where −→σ is the Pauli matrix vector [5], and the dagger denotes
the Hermitian conjugate. It is also very useful to perform
analysis in frequency domain through Fourier transform given
by

Ψo (ω) =
1√
2π

∞∫
−∞

ψo (t) · e−iωt · dt (4)

where Ψo (ω) is the Fourier transform of the time domain
signal ψo (t), which is assumed to be normalized to 1, i.e.,
∞∫

−∞
ψo (t)+ ψo (t) dt = 1.

Following Poole’s framework in which the fiber is a linear
medium without polarization dependent loss [1], we have:

Ψo (ω) = ejφD(ω) · U (ω) · Ψi (ω) · ϕ
= T (ω) · Ψi (ω) · ϕ (5)

where we denote T (ω) = ejφD(ω) ·U (ω), φD is real account-
ing for the chromatic dispersion effect, U (ω) is the unitary
Jones matrix capturing the polarization dispersion effect in
the fiber [1], Ψi (ω) (scalar) is the Fourier transform of the
input electric field, and Jones vector ϕ is the input state of
polarization [8]. Combining Eqs. 2 to 5, we arrive at

−→
S =

∞∫
−∞

−→
S (ω) · |Ψi (ω)|2 · dω (6)

where
−→
S (ω) ≡ ϕ+ (ω) · −→σ · ϕ (ω), and ϕ (ω) ≡ U (ω) · ϕ.

We will focus our analysis to the signals with the orthogonal
polarizations denoted ϕ+ and ϕ_, where subscript ‘+’ and ‘-’
stand for positive polarization and negative polarization. From
the orthogonally of ϕ+ and ϕ_, we further have

ϕ+
+ (ω) · ϕ_ (ω) = ϕ+

+ · U+U · ϕ_

= ϕ+
+ · ϕ_ = 0 (7)

or the output polarizations at each frequency ω, ϕ+ (ω)
and ϕ_ (ω) are also orthogonal. From Eq. 6, we can derive
the following relationship for output Stokes Vectors at each
frequency ω given by

−→
S _ (ω) = −−→

S + (ω) (8)

Eq. 8 is simply a widely recognized fact that the Stokes vec-
tors for orthogonal polarizations are anti-parallel in Poincare
Sphere. Substituting Eq. 8 into Eq. 6, we arrive at

−→
S _ = −−→

S + (9)

Eq. 9 shows that the Stokes vectors for the output signals from
two orthogonal input polarizations are mirror image about

the origin, i.e., they are equal in amplitude and opposite in
direction. Using the known identity that

DOP =
∣∣∣−→S

∣∣∣ (10)

we conclude that the degree-of-polarizations (DOP) for the
output signals from two orthogonal polarizations are identical,
or symmetric. This statement is true regardless of any form of
the PMD in the transmission media.

B. System Penalty

We then study the system penalty for the optical signals
with two orthogonal polarizations. It is a good approximation
that the system penalty can be considered proportional to the
pulse broadening. The pulse broadening, or the rms width δ
of the any optical pulse can be defined as

δ2 =
〈
t2

〉 − 〈t〉2 (11)

where in the context of PMD, we find that [9],

〈t〉 = t0 − 1
2
−→
Ω p · −→J (12)

〈
t2

〉
= −

∞∫
−∞

|Ψi|2
∣∣∣∣φ′ · −→J +

1
2
−→
Ω

∣∣∣∣
+

(|Ψi|′
)2 · dω

2π
(13)

|Ψi| exp (iφ) = Ψie
(iφD) (14)

t0 = −
∞∫

−∞
|Ψi|2 φ′ dω2π (15)

−→
Ω p =

∞∫
−∞

|Ψi|2 −→Ω · dω
2π

(16)

where Ψi is the Fourier transform of electric field of the
input optical pulse. φD is the phase from net fiber chromatic
dispersion. φ is the phase of Ψie

(iφD).
−→
J is the input

polarization as a Stokes vector.
−→
Ω is the input PMD vector,

with a magnitude of the DGD and a direction of the negative
delay state. t0 is the polarization independent delay.

−→
Ω p is

the principal state of polarization (PSP) for the pulse, which
may not be equal to the PSP at the center wavelength [5].
The prime indicates the derivative over angular frequency ω.
For the sake of the simplicity, we assume that only the linear
phase chirp and the fiber chromatic dispersion are present on
top of any arbitrary order of PMD. Expanding the phase φ at
the center frequency ω0 and truncate at the second-order, we
have

φ′′ = φ′′0 + β2 (17)

where φ′′0 is the initial phase chirp and β2 = φ′′D is the fiber
chromatic dispersion constant and equals to −λ2

2πc D, whereD is
commonly used fiber chromatic dispersion [10], λ is the center
wavelength, c is the speed of light. Combining Eqs.11-17, we
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Fig. 1. Experimental setup for the symmetry study of orthogonal polariza-
tions.

derive the pulse distortion difference between two orthogonal
polarizations given by

∣∣δ2+ − δ2_
∣∣ =

∣∣∣φ′′−→J · −→Ω ′
∣∣∣ =

∣∣∣∣ λ
2

2πc
De

−→
J · −→Ω ′

∣∣∣∣ (Δω)2 (18)

where δ2+/δ
2
_ is the pulse broadening for positive/negative

polarization,
−→
Ω ′ is the second-order PMD vector, (Δω)2 =〈

(ω − ω0)
2
〉

is the variance of the angular frequency ω,

and effective chromatic dispersion De ≡ D − 2πc
λ2 φ

′′
0 . For a

Gaussian pulse with an RMS pulse width of T0 and a chirp
parameter of α, φ′′0 will be equal to 2αT 2

0
1+α2 .

Assuming the system penalty is proportional to the pulse
broadening, from Eq.18, the system penalty asymmetry ΔP
between the two polarizations are thus given by

ΔP = A
∣∣∣De

−→
J · −→Ω ′

∣∣∣ (19)

where A is a proportional constant.
There are two interesting results from Eq. 19. First, if only

the first-order PMD is present
(−→

Ω ′ = 0
)
, the system penalty

is identical or symmetric for two orthogonal polarizations
(ΔP = 0), and secondly, if second-order PMD is present and
there is residual effective chromatic dispersion, the system
penalty is asymmetric, or the system penalty symmetry is
broken.

III. EXPERIMENTAL SETUP

We devise an experiment to verify the symmetry theory
related to both DOP and system penalty. Fig. 1 shows the
experimental set up for our symmetry study of DOP and
eye-closure penalty for orthogonal polarizations. An intensity-
modulated 10 Gb/s PRBS optical signal is generated by an
Agilent tunable laser and a JDSU Mach-Zehnder modulator.
The optical signal passes through a PMD emulator, which con-
sists either one-stage or two-stages of polarization-maintaining
(PM) fiber to emulate first-order or higher-order PMD. The
statistical distribution of the PMD is not a consideration for
this paper. After traversing the PMD emulator, the signal is
amplified before entering a fiber link. The output signal from
the fiber link is further amplified by a second EDFA, opti-
cally filtered and fed into an Agilent high-speed oscilloscope
equipped with a wideband optical detector. The optical filter
3 dB bandwidth is 1 nm and the OSNR of the optical signal
is approximately 25 dB measured with a resolution bandwidth
of 0.1 nm. Eye-closure penalty has been used to characterize
the PMD-induced system impairment [11] and is adopted in
this paper. For any practical purpose, Q parameter penalty

can be considered to be proportional to eye-closure penalty.
Subsequently, the measured relationship between eye-closure
penalty and DOP can be considered to be that between Q
penalty and DOP. The signal waveform traces are averaged to
remove the random noise and recorded. Then the waveform
data is converted into eye-diagrams through a Matlab program
to compute the eye-closure penalty due to PMD-induced
waveform distortion. The signal Stokes vector is measured
using an Agilent polarization analyzer by tapping the optical
signal before it enters the fiber link. The measured Stokes
vectors are related to those launched into the fiber by a simple
Stokes vector rotation. Because the fiber link has negligible
PMD, the DOP symmetry is not altered by further passing
through the fiber link. The rationale to monitor the Stokes
vector before the fiber link is that in order to measure the
symmetry/asymmetry of orthogonal polarization pairs as a
function of the fiber chromatic dispersion, several different
spools of transmission fibers are used for the fiber link during
the measurement. By placing the polarization analyzer before
the transmission fiber, the stability of the PMD emulator is
monitored. The first polarization controller PC1 is used to
optimize the input polarization for the MZ-modulator, and the
second polarization controller PC2 is used to systematically
adjust the launch polarization into the PMD emulator for
PMD/Stokes vector analysis. There is an additional PC (not
shown in Fig. 1) before PC2 to ensure that the signal enters
the half-wave plate (HWP) in PC2 with a linear polarization.
The systematic polarization adjustment is done by physically
rotating the HWP in PC2 for 90◦, which corresponds to the
Stokes vector rotating of 360 degree along a maximum circle
on Poincare Sphere.

Both the DOP and the eye-closure penalty are functions
of launch polarization (or input Stokes vector) into PMD
emulator. Although the results can be presented by a three-
dimensional polar plot, it would be quite complex and the
intuitive picture might be lost. Instead, we show a two-
dimensional polar plot presenting the DOP or eye-closure
penalty as a function of the input polarization. When the
launch polarization is rotated from 0 to 360◦ on the Poincare
Sphere, the corresponding DOPs are measured with the po-
larization analyzer, and the signal waveform traces detected
at the end of the transmission fiber spool are recorded, from
which the eye-closure penalty is computed.

IV. MEASUREMENT AND DISCUSSION

The symmetry measurement for the eye-closure penalty
with the transmission fiber chromatic dispersion of 0 ps/nm
and -1360 ps/nm are shown in Figs. 2(a) and (b) respectively.
The negative dispersion of -1360 ps/nm is obtained with a
dispersion compensation module (DCM-80) which is designed
to compensate the dispersion of 80km standard single mode
fiber (SSMF). In this measurement, only one stage of PM
fiber is used in the PMD emulator with 50ps DGD and
therefore only first-order PMD is involved. In Fig.2 (a),
0km transmission fiber is used and each pair of orthogonal
polarizations is represented by two data points which are 180◦

apart on the two-dimensional polar plot. For instance, the
measurements made at 80◦ and 260◦ is one of the orthogonal
polarization pairs, represented by A and B in Fig. 2(a). We
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Fig. 2. Polar plots for (a) the eye-closure penalty for 0 km fiber, (b) the eye-
closure penalty for 80 km dispersion-compensation-module (DCM) fiber, and
(c) the DOP for 0 km fiber. The polar angle represents the angle of launched
signal polarization state and the radius indicates the eye-closure penalty or
DOP. The tests are done with a single-stage 50 ps PM fiber. The dashed
lines in the figure are the equal value contours for eye-closure penalty or
DOP. Points A and B in Fig. 2 (a) is one example of a pair of orthogonal
polarizations.
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Fig. 3. The polar plot for (a) eye-closure penalty for 80 km dispersion-
compensation-module DCM fiber, and (b) DOP. The tests are done with two-
stage PM fiber as a PMD emulator.

can see that all the orthogonal polarization pairs result in
the same penalty, as evidenced by the symmetry of the data
points for orthogonal pairs, for instance, data point A is almost
an inversion of B across the origin. Such symmetry remains
intact when 80 km of DCM fiber is introduced as shown
in Fig. 2(b). We also measure the symmetry of eye-closure
penalty with 26km, 50km and 76km SSMF, corresponding to
the chromatic dispersion of 442 ps/nm, 850 ps/nm, and 1292
ps/nm, respectively. The penalty symmetry remains intact for
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Fig. 4. Polar plots for (a) the RF spectral density at 5 GHz for 80 km
dispersion-compensation-module (DCM), and (b) the eye-closure penalty for
80 km dispersion-compensation-module (DCM) fiber. The tests are done with
two-stage 50 ps PM fiber as a PMD emulator.

varying chromatic dispersion values we use. Similarly Fig.
2(c) shows the measured DOP on the polar plot, and clearly
each orthogonal polarization pair has the same DOP.

Fig. 3(a) shows the symmetry study for eye-closure penalty
when the optical signal passes through a two-stage (50 ps +50
ps DGD) PMD emulator with the eigen-axes of the two stages
misaligned with each other so as to generate higher-order
PMD. The first-order PMD and second PMD are measured
to be 33 ps and 1500 ps2 respectively in this experiment. The
asymmetry of the eye-closure penalty is proportional to the
magnitude of the effective chromatic dispersion and second-
order PMD [Eq.19], therefore only the result obtained with
large chromatic dispersion of -1360 ps/nm from 80 km DCM
is shown in Fig. 3(a). We see that even though the DOP is still
symmetric for each orthogonal polarization pair as shown in
Fig. 3(b), the symmetry of the eye-closure penalty is broken.
For example, the penalties for the orthogonal pair at the angles
of 120◦ and 300◦ are 1.7 dB and 4.8 dB respectively. This
represents a 3 dB asymmetry despite an identical DOP of
95% at these two launch polarizations. This further illustrates
the inaccuracy of DOP as a PMD degradation monitor. This
signifies that DOP may be a good indicator for the first-
order PMD, but does not predict the second-order PMD, and
subsequently is not a good feedback signal for a system with
large higher-order PMD [12].

The RF power from the detected signal has also been used
as a feedback signal for PMD compensation [13]. We conduct
an experiment to verify the correlation between RF signal
power and eye closure penalty. The optical signal at the output
of the fiber spool is detected with wideband optical detector,
and the RF signal from the detector is fed into a RF spectrum
analyzer. The RF spectral density is measured at 5 GHz. Due
to the polarization drift in the setup, the launched polarizations
are different than those used in Fig. 3. Fig. 4 shows the
measured RF spectral density at 5 GHz and corresponding
eye-closure penalty. The eye-closure penalty is plotted with
a negative value in order to facilitate the comparison. As we
can see that RF spectral density at 5 GHz correlates very well
with the eye-closure penalty. This is evidenced by the similar
asymmetry of RF signal to that of eye-closure penalty, in terms
of their overall shape and where the maximum asymmetry
takes place. The corresponding maximum asymmetries are 3.9
dB and 2.8 dB for eye-closure penalty and RF spectral density,
respectively, which takes place at the polarization pair of 120◦
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and 300◦.
We next quantitatively investigate the eye-closure penalty

asymmetry for different fiber chromatic dispersions when the
two-stage (50ps+50ps DGD) PMDE are still used. From Eq.
19, the maximum asymmetry ΔPmax occurs when the two
launch polarizations are in- or out-of- phase with the second-
order PMD vector, given by

ΔPmax = A ·
∣∣∣∣D − 2πc

λ2
φ′′0

∣∣∣∣ ·
∣∣∣−→Ω ′

∣∣∣ (20)

In general, the maximum asymmetry may not be reached for
orthogonal polarizations, but it can be measured by launched
three orthogonal pairs, for instance, (i) (1,0,0) and (-1,0,0),
(ii) (0,1,0) and (0,-1,0), and (iii) (0,0,1) and (0,0,-1) on the
Poincaré Sphere. It is easy to show that from Eqs. 19 and 20
that

ΔPmax =
√

(ΔP1)
2 + (ΔP2)

2 + (ΔP3)
2 (21)

where ΔP1−3 is the asymmetry of eye-closure penalty asso-
ciated with each of the three orthogonal pairs on the Poincaré
Sphere. From Eq. 21, the maximum penalty asymmetry can
be computed with the penalty values at these three pairs
of orthogonal polarizations. Additionally, the maximum eye-
closure penalty asymmetry is a linear function of the chromatic
dispersion with the slope proportional to the second-order
PMD [Eq. 20]. In our experiment, we measure the eye-closure
penalties for the three orthogonal pairs, and use Eq. 21 to
derive maximum eye-closure penalty asymmetry. Fig. 5 shows
the maximum penalty asymmetry at chromatic dispersions of
0 ps/nm, 442 ps/nm, and 850 ps/nm. The solid line is the
straight-line fit for the experimental data. Interestingly, the
minimum penalty asymmetry occurs at -195 ps/nm due to the
chirp induced by the optical modulator, which is independently
verified. We use the same coefficients to predict the eye-
closure asymmetry for the chromatic dispersion of -1360
ps/nm from 80 km of DCM fiber. The measured data shows 4.2
dB asymmetry compared with the 3.5 dB asymmetry predicted
by theory. The difference is attributed to the relatively large
eye-closure penalty around 6 dB for the 80 km DCM fiber
along with the impact of second-order PMD. The DOPs
of three orthogonal pairs for each chromatic dispersion of
transmission fiber are also recorded, showing intact symmetry
in spite of corresponding large eye-closure asymmetry. It can
be shown that the mean value of the second-order PMD for a
fiber link of a mean PMD of 50 ps is about 1400 ps2. Therefore
the level of the penalty asymmetry we have observed in Fig. 5
corresponds approximately to that of a fiber link with a mean
PMD of 50 ps.

V. CONCLUSION

We have performed theoretical analysis and systematic
measurement of the degree-of-polarization and eye-closure
penalty for optical signals with orthogonal polarizations. Both
the theory and experiment show that the symmetry of the DOP
is maintained for the orthogonal polarizations under either first
or higher-order PMD, whereas the symmetry in eye-closure
penalty is broken under second-order PMD. As a result, an
orthogonal polarization pair can have large disparity in eye-
closure penalty despite an identical degree-of-polarization. We
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Fig. 5. Maximum eye-closure penalty asymmetry as a function of fiber
dispersion.

also demonstrate a novel approach to estimate the maximum
eye-closure penalty asymmetry with three orthogonal polar-
izations on the Poincare Sphere.
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