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1. Experimental setup 

 

Fig. S1. Schematic of the experimental setup. 

2. Spectra 

After the fundamental beam was removed by a short-pass filter, the spectra of both THG and SHG 

could be measured by the spectrometer. Fig. S2 shows typical spectra of THG and SHG. Note that the 

leaked-through fundamental beam at 1075nm wavelength can still be seen. While the strongest THG 

was obtained when the excitation focal position was at the surface, the SHG spectra were measured 

inside the bulk of the glass slide.  

 

Fig. S2. Measured spectra of THG (blue dashed line) and SHG (green solid line) in a borosilicate glass 

slide.  

3. Z-scan measurements of other types of glass slides 

Fig. S3 shows an example of normalized SH and TH power as the function of excitation beam 

focal position in a z-scan measurement of BK7 glass slides with the thickness of 930m. The glass 

thickness TG was determined from the sample translation distance z between the two peaks of the 

THG spectrum as TG = nz, where n is the linear refractive index of the glass. The z values 

measured for the borosilicate glass sample (Fig.2) and the BK7 glass sample (Fig.S3) are 97m and 
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617m, respectively. Because the refractive index of n = 1.507 for both of them at 1075nm excitation 

wavelength, their thicknesses are 146m and 930m, respectively.  

The SHG efficiency increases with the focal position scanning further into the sample. In fact, the 

maximum SH intensity in the BK7 was obtained at approximately 672m from the front surface, and 

this maximum SH intensity is 70 times higher than that measured at 137m from the front surface 

where the maximum SH in the thin borosilicate glass was obtained. In order to make fair comparison 

for glass samples with different thickness, we used SH power levels measured when the focal position 

was 137m from the front surface for all the samples in the calculation of power conversion 

efficiency shown in Fig. 3.  

 

Fig. S3. SH (green) and TH (blue) intensities measured from a 930m BK7 glass slide by scanning 

the excitation focal position (z-scan).  

Fig. 2 in the paper shows that for a thin glass slide (146m borosilicate) the maximum SHG was 

obtained when the excitation focal position was near the second surface. Whereas Fig.S3 shows that 

for the thicker glass slide (930m BK7), the maximum SHG was obtained further away (~258m) 

from the second surface where the spot of the excitation beam reached the minimum size. This is 

believed to be caused by the limitation of the glass thickness correction of the focusing objective, 

which is specified as between 0 to 0.7mm [20]. 

In a similar experimental setup, a mode-locked Ti:sapphire laser (Mai Tai BB, Spectra Physics) is 

used with 790nm wavelength and approximately 80 fs pulse width at a repetition rate of 80 MHz. The 

incident beam is focused by an infinity-corrected dry objective (CFI_Plan_Apo_Lambda, 40X, 
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NA=0.95, Nikon) with adjustable cover glass correction capability ranging from 110μm to 230μm. 

SH signal is collected by another objective (CFI_TU_Plan_Fluor_EPI, 100X, NA=0.9, Nikon) with a 

long working distance of 1.0mm.  The sample is a N-BK7 window (Edmund optics) with a thickness 

of 200μm. Photodetection is performed by a highly sensitive cooled photomultiplier tube (H7422-01, 

Hamamatsu), and the fundamental beam is chopped at 100 Hz in order to be detected through a lock-

in amplifier so that background noise can be removed. The scattered fundamental photons are 

removed by several band-pass filters placed before the photomultiplier tube. 

 

Fig. S4 Intensities of SHG as the function of focal position inside a N-BK7 glass slide with a thickness 

of 200μm for different settings of cover glass correction. 

Fig. S4 shows results from z-scan measurements of SH signal at different settings of cover glass 

correction in the objective. As the cover glass correction thickness is adjusted from 120μm to 200μm, 

the location of the maximum SHG is moved accordingly toward the second surface. For different 

cover glass correction, the maxima almost have the same magnitude. Therefore, dynamic aberration 

correction of the focusing objective plays a key role in the increase of SHG when the focal point is 

moved deep into the sample. 

With a fixed setting of cover glass correction of the objective at a thickness 110μm, SH intensity 

as the function of excitation focal position is measured for different pump powers, and the results are 

shown in Fig.S5. There is no noticeable variation in the SH signal peak position when the pump 

power increases from 100mW to 150mW. Instead, the SH signal peak position at approximately 
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110μm from the first surface of the glass is primarily determined by the setting of the cover glass 

correction of the objective.   

 

Fig. S5. SH intensity as the function of focal position for different pump power levels. The glass 

thickness correction of objective is fixed at 110μm. 

4. Dependence of SH peak amplitude on pump power 

In the first experimental setup, the optical power of the SH was measured by a TE cooled silicon 

photodetector (S-010-TE2-H receiver module, Electro-optical Systems Inc.) with a noise equivalent 

power of 10
-14

 W/√Hz. The responsivity of this TE cooled detector was calibrated against a standard 

optical power meter at 555nm wavelength, and the linearity was checked against a set of optical 

attenuators. Transmission losses of collecting objective and short-pass and bandpass filters were 

subtracted from the power measurement. 

The conversion efficiency is defined as the power ratio between the generated SH component and 

the excitation beam at the fundamental frequency. Fig.S6 shows the SH power measured 20m from 

the front surface (open squares), at the middle of the sample (open triangles), and 137m from the 

front surface (open circles) as the function of the pump power in dBW. The slopes of the output/input 

power relation are 3.44dB/dB, 3.57dB/dB, and 3.84dB/dB, respectively. These slopes are clearly 

much higher than the expected value of 2 for the square-law characteristic of SHG. This indicates that 

self-focusing due to Kerr effect nonlinearity in the glass must have been involved, which brings the 

slope of output/input power relation close to quadrature dependence. Because of the nonlinear nature 
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of SHG, which is evident from Fig.S6, the conversion efficiency is also pump power-dependent. In 

our measurement with the borosilicate glass sample, the power conversion efficiency is 

approximately -51.2dB (corresponding to 7.6 x 10
-6

 in linear scale) at 0dBW (1W in linear scale) 

pump power. Note that the power conversion efficiencies reported in Fig. 3 were obtained with 0.5W 

pump power for all samples, and the focal point of the excitation beam was positioned at 137m from 

the front surface for fair comparison. However, much higher (~70 times) conversion efficiencies 

could be obtained for thicker glasses when the focal position was placed deeper inside the sample as 

illustrated in Fig.S3. 

 

Fig. S6. Bulk SH power inside borosilicate glass slide as a function of the fundamental beam power 

measured with different focal positions inside the sample. 

The experimental setup used to obtain Fig.S4 and Fig.S5 was also used to test the intensities of 

SH signal as the function of the fundamental pump power in a relatively low power regime, and the 

results are shown in Fig.S7. Fig.S7(a) shows that in the range of pump power between 10mW and 60 

mW, the dependence of SH signal on pump power is almost quadratic with a slope of 2.23dB/dB. 

However, as the pump power increases to the region between 100mW and 195mW, this slope is 

increased to 3.44dB/dB as shown in Fig. S7(b). This slope increase with the increase of pump power 

is attributed to the effect of self-focusing. 
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(b) 

Fig. S7. Intensities of SHG as the function of pump power when glass thickness correction is 

fixed at 110μm. 

5. Theoretical model of bulk SHG inside centrosymmetric material under tightly focused excitation 

As shown in Fig. S8, an incoming plane wave (PW) at the fundamental frequency ω propagates 

along the z axis and is focused by an infinity-corrected objective inside a glass slide. The origin O of 

the Cartesian coordinate system is defined as the focal point of the excitation beam, and r is the 

position vector in the focal region. α is the maximal beam angle determined by the NA of the 

focusing objective. 

 
Fig. S8 Schematic diagram of a PW focused by an infinity-corrected objective inside a glass slide. 
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Following the vector diffraction theory of Richards and Wolf [1s], if a PW linearly polarized in 

the x direction is normally incident upon the system shown by Fig. S8, the electric field at a given 

point r in the focal region can be expressed as 
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where ϕ is the azimuthal angle of the point r. A=kfl0/2 is a constant proportional to the incident field 

amplitude l0. The integrals In are defined by 
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where k is the magnitude of the wave vector of the fundamental beam. Jn is the Bessel function of the 

first kind with order n. θ is the polar angle of the point r.

  

An analytical integral representation to calculate the field gradient of focused fields can be 

derived by using the differential recursion formula between the Bessel functions of different orders 

[2s]. For a PW linearly polarized in the x-direction, the electrical field gradient in the focal region can 

be expressed as [3s] 
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The integrals In are related to the Bessel function and can be written as 
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Following the same procedure, for a PW linearly polarized in the y-direction, the electric field and the 

corresponding field gradient are shown by 
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By rotating the quarter-wave plate in the experimental setup, the polarization state of the incident 

PW can be changed progressively from linear to circular. Elliptically or circularly polarized beams 

can be regarded as the linear superposition of linearly polarized beams in the x- and y-direction. The 

electrical field and corresponding field gradient are shown by 
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φ1 and φ2 are the polarization direction of the incident linearly polarized beam with respect to the 

optical axis of the wave plate and the phase delay of the wave plate, respectively. For a quarter-wave 

plate, φ2 = 90°. 

In the Cartesian coordinate, bulk nonlinear polarization can be rewritten as 
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The propagation of the SH field in a homogeneous and isotropic medium is governed by the 

inhomogeneous wave equation. The Green’s function approach can be utilized to resolve the 

inhomogeneous wave equation. For far-field radiation (R »r), the SH radiation can be presented in 

spherical coordinates [4s,5s]: 
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Here, Θ and Φ are the polar and azimuthal angles of the detection point R, respectively. 

 

Fig. S9. Schematic of the detecting optical path. 

The evolution of the SH signal through the collimating objective is illustrated by Fig.S9 and can 

be modeled by the generalized Jones matrix formalism. Following the Török’s method [6s, 7s], the 

electric vector of the SH signal behind the collimating objective is given by 
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When the collimating objective obeys Abbe’s sine condition, the apodization function A(θ) takes the 

form of cos
1/2

Θ. The matrix R describes the coordinate transformation for rotation around the z axis 

and the matrix L describes the change in the electric field as it traverses the lens [6s, 7s]. On 

performing the matrix operations of Eq. (10), the electric field components in the Cartesian 

coordinate system are represented as 
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6. Numerical simulations 

6.1 The properties of the focused field 

Fig. S10 gives the normalized intensity distribution of the focused field at xy and xz planes, 

respectively, when a PW linearly polarized in the x-direction is focused by an infinity-corrected 

objective. From Fig. S10, it can be found that the transverse and axial lengths of the focused field are 

approximately 1.0 μm and 3.0 μm, respectively. The intensity distributions of the xE  components 

are shown by Fig. S11, which are normalized with respect to the maximum of xE . According to 

Figs. S10 and S11, the focused field is highly localized in the z-direction compared to the thickness of 

glass slides. 

                  

 

Fig. S10. Normalized intensity distribution of the focused field 
x

E  on the xy (a) and xz (b) planes, 

respectively. NA=0.85, λ=1075nm. 
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Fig. S11 Normalized intensity distributions of xE  components on the xy (a) and xz (b) planes, 

respectively. NA=0.85, λ=1075nm. 
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The NA of the focusing objective plays a crucial role in creating the field gradient. The magnitude 

of field gradient in the focal region will greatly decrease when NA is low, as shown in Fig. S12. This 

explains why there is no noticeable bulk SHG in the previously reported experiment, where although 

a glass slide was excited by the focused field, the NA of the focusing objective might not be 

sufficiently high. 

 

Fig. S12 Variation of max [ ( ) ] ( )E r E r  with NA. 

6.2 Bulk SHG by the transverse field gradient perpendicular to the beam propagation direction 

 

 

Fig. S13 Radiation pattern of SHG inside glass slide when the components in the longitudinal z-

direction are ignored. 

In some previously published papers, the radiation pattern of SH exhibits a two-lobe structure 

while the orientation of those two lobes is parallel to the x-direction, for a PW linearly polarized in 

the x-direction. This orientation is 90-degree apart from our results. The reason is that the previously 

reported SHG in [17,26] were predominately resulting from the transverse field gradient with 

negligible components in the longitudinal z-direction. Indeed in the numerical modeling, by setting 

the field component in the longitudinal z-direction to zero, the radiation pattern of SH would rotate 

90-degree, as given by Fig. S13, which agrees with the observations in [17, 26]. 
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