This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
Surface-Passivated Plasmonic Nano-Pyramids for Bulk Heterojunction Solar Cell Photocurrent Enhancement

Alec Kirkeminde, Markus Retsch, Qian Wang, Guowei Xu, Rongqing Hui, Judy Wu, Shenqiang Ren

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

We report that self-assembled gold (Au) nanopiramid arrays can greatly enhance the photocurrent of narrow bandgap organic solar cells using their plasmonic near-field effect. The plasmonic enhanced power conversion efficiency exhibited up to 200% increase under the AM 1.5 solar illumination.

Organic thin film photovoltaic devices are attracting enormous attention in recent years due to their low-cost, easy processing, light-weight and flexible properties. For an ideal solar cell to have high power conversion efficiency, adequate light absorption in the photoactive layer is required. To achieve this, increasing the thickness of photoactive layer is an effective method. However, the increased photoactive layer thickness causes a decrease in the inner electric field, which slows down charge drift and increases the possibility for recombination, and hence reduces charge carriers collection. Designing an efficient solar cell with high light absorption at a relatively small film thickness becomes a challenge to be resolved.

Previously, it was found that the absorption and emission properties of photoactive materials can be effectively influenced by the nearby resonant plasmon from metal nanostructures which enhance not only Raman scattering, fluorescence, and photochemistry, but also photovoltaic response. The plasmonic near-field enhancement or improved coupling to guided modes in metal nanostructures will induce resonant absorption in neighboring organic photoactive materials and thus increase the concentration of excitons. It was theoretically investigated that optical absorption in thin film organic solar cells was greatly enhanced by up to 50% under the plasmonic effect of metallic gratings. Kulkarni et al. showed that charge carrier generation could be enhanced more than 3 times if a thin film of silver nanoparticles was introduced under the organic photovoltaic materials, which could in principle be used to increase photocurrent in organic thin film solar cells. By blending Au nanoparticles with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Yang et al. showed that plasmonic optical absorption can be used to enhance the photovoltaic performance of tandem structured organic solar cells. However, early studies have not shown the improved energy conversion efficiency in organic solar cells if plasmonic metal nanostructures were embedded into the photoactive layer, although plasmon resonant enhanced optical absorption existed; this is due to the reduced hole mobility caused by disturbed ordering in the polymer phase, or the quenching of excited states in the photoactive polymers.

Compared with spherical nanoparticles, triangular shaped nanoparticles show a strong plasmonic resonance at the tips from both theory and experiments. The plasmonic resonance peak of a triangular shaped metal NPs can also be tuned across the entire visible region and even into the near-infrared (NIR), which cannot be easily done with spherical particles. The well-defined and tunable plasmonic properties of triangular nanoparticles triggered its extensive research on preparation and application in solar cells. However, these plasmonic metal nanoparticles usually have a disordered distribution, if the metal NPs were blended with photoactive polymers. In addition, these nanoparticles have a relatively broad size and shape distribution, and many have missing tips, decreasing their usefulness. In this work, Au plasmonic nanopiramid (NPY) structures, prepared via self-assembled nanosphere lithography, are introduced into a narrow band gap organic solar cell to examine the effect of tunable plasmonic resonance and surface passivation on the light absorption and exciton dissociation. With this setup, the plasmonic near-field created by the Au NPYs under illumination acts as the antenna to influence the resonant optical absorption of the nearby photoactive layer, consisting of Silole-Thiophene conjugated polymer (P3) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We specifically selected P3 as the photoactive polymer. This silole-thiophene conjugated polymer features increased absorption at larger wavelengths compared to P3HT due to its narrower bandgap. Whereas the overall performance of this polymer is not as good as P3HT yet, which can be ascribed to the lower charge mobility, it is a good demonstrator for the enhancement effect caused by plasmonic resonators, which are beyond 520 nm for gold structures. The good match of the plasmon resonance with the absorption spectrum of P3 showcases an upper enhancement limit. The synthesis of P3 conjugated polymer will be published later. The low mobility of narrow bandgap conjugated polymer P3 limits the thickness of photoactive layer (P3 structure is shown in Figure S1 of Supporting Information), which will influence the absorption and photocurrent of P3:PCBM system. The plasmonic enhanced photovoltaic performance was then systematically studied by controlling the size and surface capping of the NPYs. The plasmonic organic solar cells with optimum surface capped Au NPYs demonstrate a significant photocurrent enhancement and power conversion efficiency improvement with up to 200% under the AM 1.5 solar illumination.
The fabrication of plasmonic organic solar cells is schematically described in Figure 1 (See the detailed solar cell fabrication of Supporting Information). The polystyrene (PS) nanospheres with different diameters as templates are fabricated into a single monolayer on an ITO patterned glass substrate.16 PS nanosphere single layer assembly is shown in Figures 1a and 1e. The PS spheres are tightly coordinated to one another and provide an excellent two-dimensional template for NPYs with sharp tips and edges, enabling enhanced plasmonic resonances. After 30 nm Au film evaporation followed by a lift-off process (Figure 1b), the obtained Au NPY arrays show a uniform size and distribution, which ensure a uniform distribution of the plasmonic field enhancement. The dimensions of Au NPYs are controlled by the size of the templating PS nanospheres, which were characterized using scanning electron microscopy (SEM, Figure 1f) and atomic force microscopy (AFM, Figure 1g), respectively. Using different sized PS nanospheres of diameters of 1000nm, 480nm, 360nm and 240nm, respectively, side lengths of the NPYs corresponding to 225nm, 110nm, 80nm and 55nm could be realized. Furthermore, these NPYs can be readily passivated using surface capping ligands such as thiols of different length or composition. This is of great importance to fully utilize the plasmonic resonance in organic thin film solar cells because charge recombination centers usually form if metal nanoparticles are directly introduced without suitable treatment.24 In this work, the Au NPY arrays on the patterned ITO glass substrate were additionally covered with an electron blocking layer of PEDOT:PSS so that the tips of the NPYs were close to the photoactive layer of the organic solar cells, but not in direct contact, leading to concentrated optical electric fields near the junction (Figure 1h, the protruded tips after the spin-cast PEDOT:PSS layer).

A PEDOT:PSS thin film was then spin-coated onto the Au NPY arrays. The height of ~30 nm was selected for the NPYs by Au evaporation, which is compatible with the thickness of the PEDOT:PSS anode buffer layer. By controlling the spin-coating process, the Au NPYs are mostly covered by the PEDOT:PSS layer, which provides a smooth surface for optimal contact with the photoactive layer. The AFM surface topology images indicate a protrusion of 2–3 nm peaks on top of the Au NPYs into the photoactive layer. Figure 1g and 1h show topographic images of the Au NPYs before and after spin-coating of the PEDOT:PSS layer. The photoactive layer consisted of conjugated polymer P3 and PCBM (~70 nm thickness), which does not show the thickness variation in the presence and in the absence of the Au NPYs. In order to generate a suitable plasmonic effect that influences the above photoactive layer, different Au NPYs with varying side lengths were created and their optical absorption properties were analyzed. Figure 1i shows that the side lengths indeed play an important role in the plasmonic resonant absorption. The larger side length of Au NPYs leads to a red-shifted plasmonic absorption peak as well as a stronger absorption. An optimum enhancement is expected, when the plasmonic resonance of Au NPYs matches the absorption peak of the photoactive P3/PCBM layer.

Figure 2a shows the schematic diagram of plasmonic organic solar cells discussed in this work. Au NPYs sit on top of an ITO electrode and are coated with PEDOT:PSS, which acts as the anode buffer layer. P3, a p-type narrow bandgap organic conjugated polymer (A more detailed description of the polymers in presented in the supporting information), is used in conjunction with PCBM to create the type-II heterojunction. Flat-band alignment of the prepared organic solar cell is shown in Figure 2b. The plasmonic resonance enhanced light absorption of the organic solar cell with the 110 nm side-length Au NPYs is shown in Figure 2c. It was found that a side length of 110 nm of Au NPYs created with 480nm PS nanosphere generated the optimal plasmonic resonance to effectively couple with the P3/PCBM photovoltaic absorption from 600 nm to 900 nm. This cannot be attributed to the absorption of the Au NPYs themselves due to their weak light absorption intensity (Figure 2c). The plasmonic near-field effect is used to enhance light absorption of organic photovoltaic materials.21,22 In addition, the plasmonic electric field enhancement can be used to dissociate the excitons generated in the photoactive layer and thus improve the photocurrent.

As mentioned before, the plasmonic resonance depends on the geometry of the Au NPYs. Therefore, the photovoltaic performance dependence on the side lengths of Au NPYs was studied. Figure 3a shows the solar cell performance with different sized Au NPYs passivated with the same ligand, a mercapto polyethylene glycol. In comparison to the reference solar cells (without Au NPYs), the introduction of Au NPYs can improve the photovoltaic performance. Solar cells with Au NPY side-length larger than 55 nm exhibit a drastic photocurrent enhancement. At a 110 nm Au side size, the average photocurrent increase (average value ± standard deviation) from 2.7 ± 0.2 mA/cm² to 4.1 ± 0.3 mA/cm² compared to solar cells without plasmonic resonators, which is an increase of 50%. This demonstrates that the plasmonic near-field induced light absorption and electric field enhancement in organic solar cells...
can be used to effectively improve the photocurrent. The lower reflectivity of the devices with Au NPYs indicates stronger absorption of the incident light (Figure S2c, Supporting Information). Further increasing the side length of Au NPYs will decrease its photocurrent. Small sized NPYs cannot provide an enough plasmonic effect, as is demonstrated in Figure 3(a), while Au NPYs with larger size (225 nm side length) feature stronger reflectance, inhibiting light transmission, thus reducing the light absorption of the photoactive layer. The Au NPY showing the best photovoltaic performance, with the side length of 110 nm, that is discussed here are matched with the simulation model of discrete dipole approximation (DDA). Organic P3/PCBM solar cell with 110 nm side Au NPY arrays gives an average power conversion efficiency of 1.10 ± 0.05% under AM 1.5 (100 mW/cm²) solar illumination, which is about 200 % more compared to that without Au NPY arrays of 0.36 ± 0.02% power conversion efficiency. The enhanced exciton dissociation and suppressed recombination due to the protruding plasmonic electric field from Au NPYs are responsible for a better fill factor (FF) of the plasmonic P3/PCBM systems (Figure 3a). However, the polymer ordering and the series resistance due to Au NPYs could also contribute to the FF difference. The power loss and series resistance is also important for the design of efficient plasmonic enhanced OPV systems. Calculating the various resistive layers has been used to analyze the electrical characteristics of plasmonic P3/PCBM system (Table 1 of Supporting Information). The resistive power loss depends mainly on the P3/PCBM organic photoactive layer, which can be inferred from the series resistance analysis (Supporting Information). The Au NPYs-modified electrode does not contribute to the photocurrent enhancement. To fully utilize the plasmonic effect and to minimize trap spots from Au nanostructures in the photoactive organic layer, we have passivated the Au NPYs by ligands with different length and composition before spin-casting the PEDOT:PSS layer.

![Fig. 3.](image1)

Fig. 3. (a) Current-voltage (J-V) characteristics of solar cells with different side length of Au NPYs with SH-PEG ligands. (b) J-V curves of different capping ligands of Au NPYs with 110 nm side length. The solar cell performance is measured under AM 1.5 solar illumination. It has been shown that the surface of a plasmonic metal should be capped with a thin dielectric layer to prevent exciton quenching through dipole-dipole interactions and charge trapping when metal particles are embedded into photoactive layers. Dielectric coatings in this work, thiols with different chain length and composition, play an important role to prevent adverse effects of holes traps while offering an extra degree of tunability in spectral response and degree of enhancement of optical absorption. The plasmonic evanescent field of Au nanoparticles decreases exponentially as moving away from the Au nanoparticles surface. Therefore, we passivated the Au NPYs with 110 nm side length with different ligands. It was found that the ligand length had an influence on the performance of solar cells. By treating NPYs with different thiol side chains, we measured the photoresponses and found that poly(ethylene glycol) methyl ether thiol (SH-PEG) can have a most effective performance enhancement compared with other ligands such as 11-Mercapto-1-undecanol (SH-C11-OH), (3-Mercaptopropyl)trimethoxysilane (MPTMS) or no ligands. In comparison, SH-PEG has a longer chain length (about 1.8 nm) than SH-C11-OH (about 1.2 nm) and MPTMS (about 0.6 nm). One should note that due to the different chemical composition of these capping agents, additional effects from the different dielectric environments could play an important role in the performance improvement. Considering all these three molecules may act as insulating barrier, we attribute the different extent of performance improvement to the difference in the ability of inhibiting excitons quenching or charge recombination. Figure 3b demonstrates that solar cell using Au NPYs with the shortest capping shell, MPTMS, still has an improved performance compared to that without shell capping. Increasing the capping shell length leads to a more enhanced performance, demonstrating a more efficient exciton quench-inhibiting ability. This is to some extent similar to that researched by Topp et al. where solar cells could gain a positive effect when dodecylamine, a long insulating molecule, capped Au was used into the hybrid system while a negative effect was obtained in case of a short molecule, pyridine. In this work, the Au NPY array was located under the photoactive layer and its plasmonic resonance induced near-field can be more effectively utilized by decreasing the possible phase contact between the Au and the P3/PCBM phase which may cause charge recombination. Thus even a small molecule such as MPTMS can improve solar cell performance although the surface may not be completely capped due to its short and rigid chains. Solar cells with SH-PEG capped NPYs (1.1% efficiency) shows a performance enhancement of about 31% compared to one without ligand treatment (0.84%).

![Fig. 4.](image2)

Fig. 4. (a) External quantum efficiency of organic solar cell with SH-PEG capped Au NPYs (red) and without (black). (b) Plasmonic resonance simulation of Au NPYs.

In order to further understand the plasmonic near-field effect on the photocurrent of solar cells, the external quantum efficiency (EQE) with and without Au NPYs (110 nm side length) was studied and the result is included in Figure 4a. The EQE spectrum is largely improved using the plasmonic Au:SH-PEG NPYs, compared to the reference cells. The enhanced EQE at 600nm wavelength is primarily introduced by the resonant field enhancement near the tips of the Au NPYs that intrude into the P3/PCBM photoactive layer. Based on the Mie scattering theory and assuming the particle size is much smaller than the wavelength, the scattering cross section can be expressed as,

\[Q_{scat} = \frac{A}{A_{av}} \left(\frac{\epsilon_{Au} - \epsilon_{p}}{\epsilon_{Au} + 2\epsilon_{p}} \right)^2 \]

where, \(l \) is the wavelength, \(A \) is a proportionality constant which depends on the particle geometric cross section, and \(\epsilon_{Au} \) and \(\epsilon_{p} \) are...
are dielectric constants of Au and P3/PCBM, respectively. Assuming $\varepsilon_{30} = 1.9$ and using Drude-Lorentz model for the gold, a normalized scattering cross section can be calculated as shown in Figure 4(b). This further demonstrates that efficient light absorption and exciton dissociation of P3/PCBM photoactive layer are strongly correlated with plasmonic resonance field enhancement. The increased free charge carriers contribute to the photocurrent, leading to enhanced power conversion efficiency of organic solar cells. In addition, the reduced charge carriers that come from the gramine recombination in the P3 phase leads to a large built-in electric field and a high V_{oc} (Figure 3a and 3b). The resulted gramine recombination by increased free charge carriers has been confirmed using the different light intensities (Supporting Information, Figure S3).26-29

Fig. 5. (a) An example of the structure used in simulation data acquisition. (b) Corresponding simulation data obtained for cross-section. (c) Simulation data obtained when looking at the plaveview.

Plasmonic-mediated absorption enhancement may be originated from scattering and near-field enhancement effect. An additional effect to enhance the solar cell efficiency can originate from increased light scattering due to the presence of scattering objects such as the NPYs. To gauge this contribution, we measured scattering spectra of glass and Au NPYs modified glass using an integrating sphere spectrometer. From this, we find that enhanced scattering will play a minor role in our device. (details are given in the supporting information, Figure S3). It is reasonable to infer the absorption enhancement coming from the near-field enhancement which can be described entirely as a plasmonic effect from the Au NPYs. The simulated extinction cross-section spectra of Au NPYs in the PEDOT:PSS and P3/PCBM layer are shown in Figure 5 using the finite-difference time-domain (FDTD) simulation based on FULLWAVE simulation package18 (supporting Information). Figure 5a shows the 3D structure of one Au NPY with 110 nm side-length. In order to see the surface plasmonic effect, two monitors were placed in the positions shown in Figure 5a. Since plasmon coupling takes place only in its near-field region, the electric fields aligned in the x-y and z direction are simulated, and the results are shown in Figures 5b and 5c, respectively. Enhanced electric field was observed in both the x-y and z directions in these conditions, in particular, with the sharp edges and the thickness of PEDOT:PSS of about 30 nm, which is complementary to the Au NPYs' thickness (30 nm). The first monitor measures the simulated $|E|^2$ image cutting through the center of NPYs vertically, and the power distribution in the same plane is shown in Figure 5b, which shows decay length of 15 nm. The other monitor cuts horizontally through the NPYs and provides the x-y field enhancement map in Figure 5c. According to Figures 5b and 5c, high field intensity occurs at the sharp corners of the Au NPYs and up into the organic photoactive layer.

In this work, we have successfully demonstrated that plasmonic near-field enhancement from Au NPY array structures can be used to engineer optical absorption so as to enhance the photocurrent of organic solar cells. It is shown that the performance of the solar cell can be improved by optimizing the light absorption in the photoactive layer by plasmonic field enhancement, which is controlled by the dimension of Au NPYs and their surface capping ligands. Among four different side lengths, Au NPYs with 110 nm optimal side length show 200% increase of power conversion efficiency under AM 1.5 100 mW/cm² solar illumination compared to solar cells without plasmonic resonators. A power conversion efficiency up to 1.1% was achieved. The SH-PEG capping ligand of Au NPYs showed further enhancement by about 31% in comparison with no ligand treatment. Our approach can be applied to a wide range of nanostructured solar cells and is also compatible with conventional solution processing, thereby offering a generic method for the fabrication of highly efficient plasmon enhanced organic solar cells.

Acknowledgements
S.R. thanks the University of Kansas for its startup and new faculty general research fund (NFGRF) financial supporting and by a subcontract from Department of Energy award (DESC0005448). J.W. was supported in part by ARO contract No. ARO-W911NF-09-1-0295 and NSF contract Nos. NSF-DMR-0803149, 1105986 and NSF EPSCoR-0903806, and matching support from the State of Kansas through Kansas Technology Enterprise Corporation.

Notes and references
1. Department of Chemistry, University of Kansas, Lawrence, KS, USA 66045. Fax: +1 785-864-5396; Tel: +1 785-864-2315; Email: Shengjiang@ku.edu
2. Physical Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
3. Department of Electrical Engineering and Computer Science,
4. Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA 66045
† Electronic Supplementary Information (ESI) available. See DOI: 10.1039/b000000x

References:
Self-assembled Au nanopyramid arrays show 200% increased efficiency of narrow bandgap organic solar cells using their plasmonic near-field effect.