Resilience Strategy

User-Controlled Adaptive Applications

• Introduction

• Resilience strategy
 - network survivability and resilience
 1. maintain survivable connectivity when possible
 2. survivable communication even when not connected
 3. resilient network mechanisms
 4. technologies to enhance resilience and survivability
 - end-to-end resilience and disruption tolerance
 - disruption-tolerant user-controlled adaptive applications

• Summary
Application Flow Characteristics

<table>
<thead>
<tr>
<th>Application flow</th>
<th>Characteristic</th>
<th>Individual bandwidth</th>
<th>Start/transient delay</th>
<th>Steady-state delay</th>
<th>Latency budget</th>
<th>Loss tolerance</th>
<th>Adaptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed computing</td>
<td></td>
<td>low–high</td>
<td></td>
<td>real-time</td>
<td>1μs–10ms</td>
<td>none</td>
<td>low</td>
</tr>
<tr>
<td>Process control</td>
<td></td>
<td>low</td>
<td></td>
<td>real-time</td>
<td>1μs–10ms</td>
<td>none</td>
<td>low</td>
</tr>
<tr>
<td>Haptics</td>
<td></td>
<td>very low</td>
<td></td>
<td>real-time</td>
<td>10 ms</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Live interactive voice</td>
<td></td>
<td>low</td>
<td>interactive</td>
<td>real-time</td>
<td>30 ms</td>
<td>very low</td>
<td>limited</td>
</tr>
<tr>
<td>Live interactive video</td>
<td></td>
<td>med</td>
<td>interactive</td>
<td>real-time</td>
<td>300 ms</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td>Stored streaming video</td>
<td></td>
<td>mod</td>
<td>interactive</td>
<td></td>
<td>1–10 s</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Stored interactive video</td>
<td></td>
<td>mod</td>
<td>interactive</td>
<td>interactive</td>
<td>100 ms</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td>Web browsing</td>
<td></td>
<td>med–high</td>
<td>interactive</td>
<td></td>
<td>100 ms – 1 s</td>
<td>none</td>
<td>moderate</td>
</tr>
<tr>
<td>Information push</td>
<td></td>
<td>low–med</td>
<td>push</td>
<td></td>
<td>1 min – 1 d</td>
<td>moderate</td>
<td>high</td>
</tr>
<tr>
<td>Telemetry</td>
<td></td>
<td>low–med</td>
<td></td>
<td>varies</td>
<td>varies</td>
<td>none</td>
<td>limited</td>
</tr>
<tr>
<td>Remote Backup</td>
<td></td>
<td>high</td>
<td>push</td>
<td>deadline</td>
<td>1 hour</td>
<td>none</td>
<td>high</td>
</tr>
<tr>
<td>Email</td>
<td></td>
<td>low</td>
<td>push</td>
<td>best effort</td>
<td>1 min – 1 hr</td>
<td>very low</td>
<td>high</td>
</tr>
</tbody>
</table>
Application Categories

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Information Access</th>
<th>Telepresence</th>
<th>Distributed Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Relationship</td>
<td>client/server</td>
<td>peer-to-peer</td>
<td>varies</td>
</tr>
<tr>
<td>Bandwidth symmetry</td>
<td>asymmetric</td>
<td>symmetric</td>
<td>symmetric</td>
</tr>
<tr>
<td>Transfer granularity</td>
<td>large</td>
<td>continuous</td>
<td>varies</td>
</tr>
<tr>
<td>E2E Synchronisation</td>
<td>none</td>
<td>real time</td>
<td>varies</td>
</tr>
</tbody>
</table>
Application Categories

Information Access

- Client accessing information from a server
- Asymmetric bandwidth
- Response time is important metric
 - $100 \text{ ms} \leq T_r \leq 1 \text{ s}$ target
- Significant bandwidth requirement
 - individual and aggregate
 - bandwidth challenged for interactive response bounds
Application Categories

Information Access: Server Push

- Reduce response time by pushing data to user
 - server knows what user wants
 - data already present when user requests
 - reduces peak bandwidth
Application Categories

Telepresence

Data streams with embedded synchronisation

- Peer-to-peer exchange of virtual presence
 - Example: video conferencing
- Relatively symmetric bandwidth
- Bandwidth requirements
 - Teleconferencing
 - Aggregate bandwidth enhanced (operates at low speed)
 - Applications with specific requirements
 - Bandwidth enabled
 - Example: telemedicine
Application Categories
Distributed Computing and Net Storage

data exchange and synchronisation

- Distribution beyond a room (>LAN) of:
 - computations
 - storage connection to CPU

- Arbitrary exchange of control, data, state

- Application-dependent partitioning critical
Application Categories

Composed Applications

• Complex applications consist of multiple components
• Composition of
 – information access
 – telepresence
 – distributed computing
• Example: distance learning
 – information access for class and reference materials
 – telepresence for student/teacher interaction
Disruption Tolerant Applications

Adaptive with Knobs and Dials

- Applications should adapt to and mask disruptions
 - *dials* provide feedback from end-to-end paths (& network)
 - *knobs* influence transport and network behaviour
- Delay *translucency* (not transparency)
Application Adaptation

Compression

- Compression to reduce delay
 - total delay includes
 - transmission delay
 - compression/decompression
 - benefit tradeoff between
 - path bandwidth
 - processing rate and cycles
Disruption Tolerant Applications
Communication Association

• Recall: disruption tolerance goals for *applications*
 – information access by the user or application
 – end-to-end communication association

• Applications should *adapt* to path conditions
 – adaptive within modes
 • e.g. frame rate and resolution based on available bandwidth
 – adaptive between modes
 • e.g. video → audio → chat → messaging → email

• Driven by user preferences
 – e.g. tradeoff between frame rate and resolution
Disruption Tolerant Applications

Information Access

- Recall: disruption tolerance goals for *applications*
 - information access by the user or application
 - end-to-end communication association
- User experience highly dependent on response time
 - *interactive* information access
 - subsecond target response time
 - 100 ms ideal response time

![Image of latency and utility graph]
Disruption Tolerant Applications

Example: WVM Latency-Aware Web Browser

• Distributed information access
 - access information from remote locations
 - Web provides most common infrastructure
 • web browser as client
 • HTTP as protocol

• WVM (Web VADE MECUM)
 - knobs and dials
 - user behaviour emulation
 - prototype: Mozilla on Linux using IBM Research WBI toolkit
Disruption Tolerant Applications
Example: WVM Motivation

- Earth
- Mars
- Jupiter
- Server
- Demand Cache
- Server Push
- User
- Cache
- \(d_{est} \)

8 – 40 min
1 – 1.5 hr
1 – 1.5 hr

Sterbenz
Disruption Tolerant Applications

Example: WVM Knobs and Dials

- **Dials**
 - past response time t_r history*
 - weak link connectivity (instantaneous rate r_i to lighthouse)*
 - object size from server metadata
 - average end-to-end delay $l_i + l_s$ via probes to server
 - cached freshness* * implemented in prototype

- **Knobs**: application and user
Disruption Tolerant Applications
Example: WVM Dials - GUI

• Link color gives high level \{fast, old, slow, unknown\}

• Status bar indicates global and per link details
 - past response time
 - dynamic adjustment of weak link to lighthouse
Disruption Tolerant Applications

Example: WVM User Influence Knobs

- **Fetch action**
 - left click: default
 - get cached if available
 - profile based action
 - right click gives options:
 - fetch definitive
 refresh window when definitive copy arrives
 - nonblocking fetch
 definitive copy in new window when available

- **View menu selection**
 - allows display of unmodified page (un-munge HTML)
Disruption Tolerant Applications

Example: WVM Prototype Information Flow

- **Request**: User profile
- **HTTP Get**: RTT, bw, connectivity
- **Http Request Editor**: Set $ parms
- **User Profile**: Update
- **Store Statistics**: Hit, hit info + metadata
- **Response Editor**: Pass content re-color URLs
- **Local $**: (miss ∨ old) ∧ fetch
- **Web**: Net prot stack
- **Response Editor**: RTT, bw, connectivity
Disruption Tolerant Applications

Example: WVM Proxy States

- Strongly Connected:
 - serve from network and cache
 - aggressive preload and refresh
 - profile (all states)

- Weakly Connected:
 - serve from cache and network
 - controlled refresh and preload

- Disconnected:
 - serve only from cache

states based on CODA
Disruption Tolerant Applications
Example: WVM Profile and User Emulation

• All user requests pass through WVM
• WVM builds a user-specific **WVM-ProfileGraph**
 - tracks and represents user Web access pattern
 - nodes are URLs accessed; directed edges for traversal
• URL priority limits cache life and refresh bandwidth
 - nodes and edges fade using a **decay formula**
• Autonomic user emulation
 - graph is automatically traversed when fully connected
 - graph slowly/selectively traversed when weakly connected
 - cache kept fresh even when user away from client
 - cache is as fresh as possible after state change \{weak\|disc\}
 - coarse-grained learning possible (e.g. daily schedule)
Disruption Tolerant Applications

Example: WVM Profile Graph
Resilience, Survivability, DT

Summary

• Introduction

• Resilience strategy
 - network survivability and resilience
 1. maintain survivable connectivity when possible
 2. survivable communication even when not connected
 3. resilient network mechanisms
 4. technologies to enhance resilience and survivability
 - end-to-end resilience and disruption tolerance
 - disruption-tolerant user-controlled adaptive applications

• Summary
Survivability & Disruption Tolerance

Summary

• Attack problem at all levels:
 - physical, MAC, and link robustness and agility
 - network survivability
 - end-to-end survivability and disruption tolerance
 - disruption-tolerant user-controlled adaptive applications

• Beyond fault tolerance and crypto

• Design for survivability and disruption tolerance
 - expect challenging communication channel environment
 - expect and exploit mobility
 - expect, adapt, and mask high latency with user influence
 - interlayer awareness and control (knobs and dials)
 - intelligent resource & constraint tradeoffs (P, M, B, E, L)
Survivability & Disruption Tolerance

Primary References

Available from http://ww.sterbenz.org/sumowin

SUMOWN/DTN

ETEN

WVM

Long latency

Acknowledgements: Technical Contributors

• Lancaster University
 - Martin Dunmore
 - Hayat Kara
 - Laurent Mathy
 - Andreas Mauthe
 - Ben McCarthy
 - Chris Edwards
 - Idris Rai
 - Manolis Sifalakis
 - Steven Simpson
 - Linlin Xie

• UMass – Amherst
 - Jim Kurose

• BBN
 - Mark Allman*
 - Alden W. Jackson
 - Rajesh Krishnan
 - Ram Ramanathan
 - Tushar Saxena*
 - Martha Steenstrup*
 - Fabrice Tchakountio

* former affiliation

some of this work performed at BBN
Survivability & Disruption Tolerance

Acknowledgements: Funding Agencies

- Telekom Austria
- EC
 - 6NET
 - ANA Consortium
 - Telekom Austria AG
 - Universität Basel
 - ETH Zürich
 - Fraunhofer Fokus – Berlin
 - Lancaster University
 - Université de Liège
 - NEC Europe – Heidelberg
 - Universitetet i Oslo
 - Université Pierre et Marie Curie – Paris
 - E-NEXT (EC Net. Ctr. Excellence)
- DARPA
 - Doug Maughan* (SUMOWIN)
 - Rob Ruth* (GloMo)
 - Jean Sholtz* (WiaB)
- NASA
 - William Ivancic
 * former affiliation
- Cisco
End of Foils