Mobile Wireless Networking
The University of Kansas EECS 882
Mobile Ad Hoc Networks

James P.G. Sterbenz
Department of Electrical Engineering & Computer Science
Information Technology & Telecommunications Research Center
The University of Kansas

jgps@eeecs.ku.edu

http://www.ittc.ku.edu/~jgps/courses/mwnets
Mobile Wireless Networking
Mobile Ad Hoc Networks

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks
AH.1 Motivation and Application

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks

Introduction

- **Mobile ad hoc network** (MANET)
 - mobile: node and groups of nodes move
 - wireless: mobility implies mostly wireless links
 - ad hoc: little or no reliance on network infrastructure
 - from Latin: *for this* (purpose)

- Ad hoc network
 - generalisation of mobile ad hoc network
 - nodes need not be mobile
 - but are typically wireless: e.g. fixed wireless mesh network
Mobile Ad Hoc Networks

Introduction: MANET

- **MANET**: mobile ad hoc network
 - rhymes with “planet” but accent on 2nd syllable
 - many people pronounce as French painter Édouard Manet

- **MANET** can be used in two senses
 - mobile ad hoc network, in general
 - IETF MANET working group protocols

 - AODV ad hoc on demand distance vector [RFC 3651]
 - DSR dynamic source routing [RFC 4728]
 - OLSR optimized link state routing [RFC 3626]
 - TBRPF topology broadcast based on RPF [RFC 3684]
 - and other work in progress (NHDP, DYMO, SMF)
Mobile Ad Hoc Networks

Motivation

- Untethered operation
 - requires mobile and wireless
 - same motivation as for WLANs and mobile cellular telephony

- Ubiquitous communication
 - precludes dependence on infrastructure
 - physical infrastructure, e.g. base stations
 - protocol infrastructure, e.g. name servers, topology databases
 - infrastructure may be used when available
 - e.g. gateway from MANET to Internet or PSTN
Mobile Ad Hoc Networks

Applications

Applications for MANETs?
Mobile Ad Hoc Networks

Applications

• Local communication when infrastructure unavailable
 – shielded environments
 • caves, faraday cages in corporate and defense facilities
 – remote environments; infrastructure economically infeasible
 • research and rescue in mountains, Arctic and Antarctic
 – disaster and emergency network (re)deployment
 – military operations in hostile environments
Mobile Ad Hoc Networks

Applications

• Local communication when infrastructure unavailable
 – shielded environments
 • caves, faraday cages in corporate and defense facilities
 – remote environments; infrastructure economically infeasible
 • research and rescue in mountains, Arctic and Antarctic
 – disaster and emergency network (re)deployment
 – military operations in hostile environments

• Highly mobile groups
 – communication among vehicles
 • VANETS: vehicle ad hoc nets
 – tactical military networks
Mobile Ad Hoc Networks

AH.2 Architecture, Challenges and Issues

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks

Background: Review of Wireless Network Types

- Wireless Internet: WLANs, WANs, and mobile IP
- Mobile cellular telephony
- MANETs: mobile ad hoc networks
MANET Background

Wireless Internet

- **Wireless Internet**
 - *wireless nodes* use
 - *base station* or *access point*
 - connected to wired Internet perhaps *multihop wireless mesh*

Relationship to MANETs?
MANET Background

Wireless Internet

- wireless nodes use
- base station or access point
- connected to wired Internet perhaps multihop wireless mesh

Relationship to MANETs

+ support untethered communication: wireless access links
+ limited mobility possible if mobile IP deployed

problems?
MANET Background

Wireless Internet

- **Wireless Internet**
 - wireless nodes use
 - base station or access point
 - connected to wired Internet perhaps multihop wireless mesh

- **Relationship to MANETs**
 + support untethered communication: wireless access links
 + limited mobility possible if mobile IP deployed
 - *infrastructure required*: APs or BSs
 - *no peer-to-peer communication*
MANET Background
Mobile Cellular Telephone Network

- Mobile cellular telephone network
 - network divided into cells
 - covered by *base stations*
 - cells interconnected to PSTN by *mobile switching centers*
 - *mobile terminals* move among cells

Relationship to MANETs?
MANET Background
Mobile Cellular Telephone Network

• Mobile cellular telephone network
 – network divided into cells
 – covered by base stations
 – cells interconnected to PSTN by mobile switching centers
 – mobile terminals move among cells

• Relationship to MANETs?
 + support for mobility and roaming among providers

problems?
MANET Background
Mobile Cellular Telephone Network

- Mobile cellular telephone network
 - network divided into cells
 - covered by base stations
 - cells interconnected to PSTN by mobile switching centers
 - mobile terminals move among cells

- Relationship to MANETs?
 + support for mobility and roaming among providers
 - *infrastructure required*: BSs and MSCs
 - *no peer-to-peer communication*
 - *not originally designed for data*
Mobile Ad Hoc Networks

Requirements

- Untethered operation
 - *wireless* links
 - provided by Wireless Internet and mobile telephony
Mobile Ad Hoc Networks

Requirements

- Untethered operation
 - *wireless* links
 - provided by Wireless Internet and mobile telephony

- Nomadic operation
 - *mobility* support
 - provided by mobile telephony
 - limited support provided by mobile IP
 - but rarely deployed

What else?
Mobile Ad Hoc Networks

Requirements

- Untethered operation
- Nomadic operation
- Non-dependence on infrastructure
 - may use when available to improve service
Mobile Ad Hoc Networks

Requirements

- Untethered operation
- Nomadic operation
- Non-dependence on infrastructure
- Arbitrary data communication
 - peer-to-peer
 - group communication (multicast, broadcast)
 - multihop: nodes are both ES and IS
Mobile Ad Hoc Networks

Requirements

• Untethered operation
• Nomadic operation
• Non-dependence on infrastructure
• Arbitrary data communication
• Management of constrained resources Lecture EM
 – energy, bandwidth, processing, memory
Mobile Ad Hoc Networks

Requirements

- Untethered operation
- Nomadic operation
- Non-dependence on infrastructure
- Arbitrary data communication
- Management of constrained resources Lecture EM
- Resilience and security Lecture RS
 - unreliable open channel
Mobile Ad Hoc Networks
MANET Architecture

- Mobile ad hoc networks
 - *mobile nodes* communicate with one another
 - PDAs, laptops, vehicles
Mobile Ad Hoc Networks

MANET Architecture

- Mobile ad hoc networks
 - mobile nodes communicate with one another
 - PDAs, laptops, vehicles
 - MNs relay *multihop* when necessary
Mobile Ad Hoc Networks

MANET Architecture

- Mobile ad hoc networks
 - mobile nodes communicate with one another
 - PDAs, laptops, vehicles
 - MNs relay multihop when necessary
 - without the need for infrastructure
Mobile Ad Hoc Networks
MANET Architecture

- Mobile ad hoc networks
 - mobile nodes communicate with one another
 - PDAs, laptops, vehicles
 - MNs relay multihop when necessary
 - without the need for infrastructure
 - infrastructure used when available
 - *access gateway* to Global Internet
 - directory and security servers
Mobile Wireless Networking
AH.3 Self-Organisation

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
 AH.3.1 Auto-configuration
 AH.3.2 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks

Implications of No Infrastructure

- MANETs need to operate without infrastructure
 \textit{implication}?
Mobile Ad Hoc Networks
Implications of No Infrastructure

- MANETs need to operate without infrastructure
 - nodes must configure themselves
 - nodes must organise themselves into networks

Challenges?
Mobile Ad Hoc Networks

Challenges

- MANETs need to operate without infrastructure
 - nodes must configure themselves
 - nodes must organise themselves into networks

- Challenges
 - fully distributed system with inconsistent information
 - weak and episodic connectivity: stale information
 - mobility: dynamically changing information
Mobile Ad Hoc Networks

AH.3 Self-Organisation

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
 AH.3.1 Auto-configuration
 AH.3.2 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks

Auto-Configuration

- Nodes must be configured for a particular network
 - physical layer: frequency, coding, bandwidth, ...
 - MAC layer: type and parameters
 - link layer: protocol, error control, ...
Mobile Ad Hoc Networks
Auto-Configuration

• Nodes must be configured for a particular network
 – physical layer: frequency, coding, bandwidth, ...
 – MAC layer: type and parameters
 – link layer: protocol, error control, ...
 – network layer: (preliminary) addresses

• Auto-configuration: nodes configure themselves
 – without human interaction
 – without depending on infrastructure
 how?
Mobile Ad Hoc Networks
Auto-Configuration Techniques

• Auto-configuration: nodes configure themselves
 – reasonable defaults
 – context-based
 • sensing environment
 • may use infrastructure if available
 – policy driven
 • may be guided by human
Mobile Ad Hoc Networks
Auto-Configuration Techniques

• Auto-configuration: nodes configure themselves
 – reasonable defaults
 – context-based
 • sensing environment
 • may use infrastructure if available
 – policy driven
 • may be guided by human

• Configured nodes do not a network make

what’s next?
Mobile Wireless Networking
AH.3 Self-Organisation

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
 AH.3.1 Auto-configuration
 AH.3.2 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networks
Self-Organisation

- Configured nodes must be organised into a network
 - pairwise link agreement to form L2 structures
 - may modify auto-configuration of L1 – L2 parameters
 - network topology and federation to form L3 structures
 - will likely modify any preliminary node addresses
Mobile Ad Hoc Networks
Self-Organisation

- Configured nodes must be organised into a network
 - pairwise link agreement to form L2 structures
 - may modify auto-configuration of L1 – L2 parameters
 - network topology and federation to form L3 structures
 - will likely modify any preliminary node addresses

- **Self-organisation**: nodes organise themselves
 - without human interaction
 - without depending on infrastructure such as DHCP and DNS
 how?
Ad Hoc Self-Organisation

Steps

- Neighbour discovery
- Link formation
- Self-organisation
- Topology optimisation and maintenance
Ad Hoc Self-Organisation

Set of Nodes

• Set of nodes to self-organise
Ad Hoc Self-Organisation

Neighbour Discovery

• Nodes emit beacons to announce their presence
 – known frequencies and codes used for announcements
 – part of auto-configuration

• Establishes set of directly reachable nodes

should all pairs form links?
Ad Hoc Self-Organisation
Link Formation

- Pairwise negotiation of link formation
 - constrained by maximum degree
 - interested nodes answer beacons
Ad Hoc Self-Organisation

Link Formation

• Pairwise negotiation of link formation
 – constrained by maximum degree
 – interested nodes answer beacons
 – exchange identification, node and link characteristics
 – agree on variable physical, MAC, and link parameters

• Forms layer 2 connectivity structure
Ad Hoc Self-Organisation
Link Formation

- Maintain link adjacencies
 - e.g. keepalive messages
 - discard links to unreachable nodes
 - add links to new nodes in range
- Maintains layer 2 connectivity structure
Ad Hoc Self-Organisation
Link Formation

• Layer 2 connectivity structure built and maintained

what’s next?
Ad Hoc Self-Organisation

Link Formation

- Layer 2 connectivity structure built and maintained
 - but we need a network with the ability to route and forward
 - we may need hierarchy to manage scalability
Ad Hoc Self-Organisation
Self-Organisation and Federation

• Communicating nodes self-organise into federations
 – network-layer address acquisition and agreement
 – bootstrap routing topology

unlimited size of federations?
Ad Hoc Self-Organisation
Self-Organisation and Federation

- Communicating nodes self-organise into federations
 - network structure
 - small networks can be flat (10s to perhaps 1000s of nodes)
 - large networks need hierarchical structure of clusters

how formed?
Ad Hoc Self-Organisation

Self-Organisation and Federation

- Clustering algorithm requirements
 - efficiency measured in message complexity
 - efficiency measured in time to form cluster
Ad Hoc Self-Organisation

Self-Organisation and Federation

• Clustering algorithm objectives
 – cluster size (number of nodes), e.g. expanding ring search
 – cluster diameter (maximum length of shortest path)
 – policy-driven constraints
 • e.g. don’t cluster with a bad guy
Ad Hoc Self-Organisation
Self-Organisation and Federation

• Hierarchical network structure
 – lowest level: clusters of physical nodes
 – higher levels: clusters of clusters

how?
Ad Hoc Self-Organisation

Self-Organisation and Federation

• Hierarchical network structure
 – each cluster may have a leader or cluster head
 – leader is abstraction for entire cluster to higher level
Ad Hoc Self-Organisation
Self-Organisation and Federation

- Hierarchical network structure
 - each cluster may have a leader or cluster head
 - leader is abstraction for entire cluster to higher level
 - level n clusters are virtual nodes in level $n+1$ cluster
Ad Hoc Self-Organisation

Self-Organisation and Federation

- Hierarchical network structure: cluster selection
 - determined by role (e.g. personal node in a PAN)
 - leader election by distributed algorithm (most common)
 - leaderless clustering: fully distributed operation
Ad Hoc Self-Organisation
Self-Organisation and Federation

- Layer 3 connectivity structure self-organised

what about mobility and dynamic behaviour?
Ad Hoc Self-Organisation

Topology Optimisation and Maintenance

- Topology maintenance of federations
 - merge/split
 - group mobility, dynamic coalitions
 - heal partition
Ad Hoc Self-Organisation

Topology Optimisation and Maintenance

- Topology maintenance of nodes
 - leave/join from/to federation
 - node mobility
 - resolution to identifier vs. topological address reassignment
Mobile Ad Hoc Networks

AH.4 Routing Overview

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Mobile Ad Hoc Networking
Routing Challenges

- Routing algorithm discovers path
 - between source(s) and destination(s)
Mobile Ad Hoc Networking
Routing Challenges

- Routing algorithm discovers path
 - between source(s) and destination(s)
- Routing algorithm classes
 - distance vector (e.g. RIP)
 - link state (e.g. OSPF, ISIS)
 - source routing

Challenges in MANETs?
Mobile Ad Hoc Networking
Routing Challenges

- Routing algorithm discovers path
 - between source(s) and destination(s)
- Routing algorithm classes
 - distance vector (e.g. RIP)
 - link state (e.g. OSPF, ISIS)
 - source routing
- Challenges in MANETs
 - episodic connectivity and mobility
 - routes and link state keeps changing
 - difficult or impossible to maintain consistent information
- Conventional DV and LS algorithms do not work well
Mobile Ad Hoc Networking
Routing Algorithm Examples

• Many proposals *Lecture MR*
 – many within the IETF MANET working group
 – specialised domains: e.g. supersonic military aircraft

• Examples:
 – DSDV: destination-sequenced distance vector
 – AODV: ad hoc on-demand distance vector
 – OLSR: optimized link state routing protocol
 – DSR: dynamic source routing
Mobile Ad Hoc Networking
Routing Algorithm Examples

• Many proposals *Lecture MR*
 – many within the IETF MANET working group
 – specialised domains: e.g. supersonic military aircraft

• Examples:
 – AODV: ad hoc on-demand distance vector
 – DSR: dynamic source routing

• Problem:
 – no one protocol can possibly be right for all scenarios
 – adaptive framework needed to negotiate protocols
 • part of self-organisation and federation
Mobile Ad Hoc Networks

AH.5 Autonomic Control and Self-Management

AH.1 Motivation and application
AH.2 Architecture, challenges and issues
AH.3 Self-organisation
AH.4 Routing overview
AH.5 Autonomic control and self-management
Introduction

• In the current Internet:
 – network control is poorly understood
 – network management is a dark art
 – already exceeding the ability for humans to understand
Ad Hoc Control & Management

Introduction

• In the current Internet:
 – network control is poorly understood
 – network management is a dark art
 – already exceeding the ability for humans to understand

• In large-scale MANETs:
 – problem is significantly worse
 – dynamic behaviour
 – distributed ownership and management of resources
Autonomic Control & Management

Motivation

• Large-scale MANET control and management
 – seems to require autonomic mechanisms

• Autonomic network management and control: self-*
 – auto-configuration
 – self-organisation
 – self-management
 – self-diagnosis and repair
 – ...

• Significant extension to self-organisation
 – very hard research problem
Mobile Ad Hoc Networks

Further Reading

Mobile Ad Hoc Networks

Acknowledgements

Some material in these foils is based on the textbook

- Murthy and Manoj,

 Ad Hoc Wireless Networks: Architectures and Protocols

Some material in these foils enhanced from EECS 780 foils