Mobile Wireless Networking
The University of Kansas EECS 882
Wireless Network Simulation with ns-3

Egemen K. Çetinkaya and James P.G. Sterbenz
Department of Electrical Engineering & Computer Science
Information Technology & Telecommunications Research Center
The University of Kansas

ekc@ittc.ku.edu
jpgs@eecs.ku.edu

http://www.ittc.ku.edu/~jpgs/courses/mwnets

Outline

SW.1 Overview of ns-3 wireless network simulations
SW.2 Wireless network simulation example
SW.3 Laboratory assignment
Overview of ns-3 Wireless Simulation

Characteristics of Wireless Networks

- Network links are constructed on different mediums
 - wired
 - wireless
- Wireless nodes operate untethered
 - assuming they have power
- Wireless nodes may be mobile
 - need to choose a mobility model for the simulation needs
 - more about mobility models in the next lecture
Overview of ns-3 Wireless Simulation

Wireless Network Models in ns-3

- Currently 802.11 based wireless models supported
 - 802.11a, 802.11b, 802.11g, 802.11e, 802.11s
 - infrastructure or ad-hoc modes
 - QoS or non-QoS modes

- There are several physical layer models
 - propagation loss models: Friis, random, etc.
 - propagation delay models: speed based, random

- WiMAX and LTE modules available
- Various mobility models: RWP etc. (next lecture)
- More on MANET routing protocols in coming weeks

Overview of ns-3 Wireless Simulation

Layered View of ns-3 Wireless Models

- Mobility models affect L1→L3 in ns-3
- Wireless models in ns-3 deal with layer 2 and layer 1
 - MAC high
 - MAC low
 - physical
Overview of ns-3 Wireless Simulation

Script Structure

- C++ scripts include the following structure
 - boilerplate: important for documentation
 - module includes: include header files
 - ns-3 namespace: global declaration
 - logging: optional
 - main function: declare main function
 - topology helpers: objects to combine distinct operations
 - nodes → channels → devices → mobility → L3 → L5
 - applications: on/off application, UdpEchoClient/Server
 - tracing: .tr and/or .pcap files
 - simulator: start/end simulator, cleanup

Wireless Network Construction in ns-3

- Create type of nodes
 - stations
 - access points
- Create physical layer and channel, and associate
- Create MAC layer characteristics for node types
 - QoS or non-QoS
 - assign Service Set IDentifier (SSID)
 - and other MAC related attributes
- Install devices to nodes
- Set-up mobility models
- Configure Internet stack, application, routing models
Wireless Simulation with ns-3

Wireless Network Simulation Example

SW.1 Overview of ns-3 wireless network simulations
SW.2 Wireless network simulation example
SW.3 Laboratory assignment

Network Simulation Example

Wireless Network Simulation Setup

- Example is at examples/tutorial/third.cc
 - focus of this presentation is wireless configuration
- Network topology consists of:
 - wireless nodes/links:
 - 3 STA nodes
 - 1 AP node
 - 802.11 links, non-QoS mode, beaconing enabled
 - wired nodes:
 - 2 nodes connected via PPP link
 - 4 nodes on a CSMA LAN
- Application: UdpEchoServer
 - server on CSMA subnetwork, client on a STA node
Network Simulation Example

third.cc Script 1

- NodeContainer class, create method
 - NodeContainer wifiStaNodes;
 - wifiStaNodes.Create (nWifi);
 - NodeContainer wifiApNode = p2pNodes.Get (0);

- Set WifiChannel and WifiPhy
 - YansWifiChannelHelper channel = YansWifiChannelHelper::Default ();
 - YansWifiPhyHelper phy = YansWifiPhyHelper::Default ();

- Associate channel and PHY
 - phy.SetChannel (channel.Create ());

Network Simulation Example

third.cc Script 2

- Configure MAC layer
 - WifiHelper wifi = WifiHelper::Default ();
 - wifi.SetRemoteStationManager ("ns3::AarfWifiManager");
 - NqosWifiMacHelper mac = NqosWifiMacHelper::Default ();
 - Ssid ssid = Ssid ("ns-3-ssid");
 - mac.SetType ("ns3::NqstaWifiMac", "Ssid", SsidValue (ssid), "ActiveProbing", BooleanValue (false));
Network Simulation Example

third.cc Script

• Install MAC layer properties to the devices
 - NetDeviceContainer staDevices;
 - staDevices = wifi.Install (phy, mac, wifiStaNodes);

• Install mobility models to nodes
 - mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
 - mobility.Install (wifiApNode);

Wireless Simulation with ns-3

Laboratory Assignment

SW.1 Overview of ns-3 wireless network simulations
SW.2 Wireless network simulation example
SW.3 Laboratory assignment
Assignment Configuration

• Only 4 STA nodes, 1 AP node
 - infrastructure mode
 - no wired links → this means no CSMA, no PPP links
• Non-QoS MAC
• Enable ASCII and PCAP tracing on all interfaces
• Application
 - from STA 2 to STA 4
 - UdpEchoServer on port 70
• Rest of the attribute values: use from the example
 - IP address assignment
 - mobility models

Extra Credit

• Use WiMAX examples in the folder:
 - ../ns-3.12.1/src/wimax/examples
• Generate a topology with
 - 1 base station
 - 4 subscriber stations
• Simple scheduling, simple channel, default values
• Use your choice of IP addresses and other attributes
• Enable ASCII and PCAP tracing
• Properly block comment your code
• Delete unnecessary lines and simplify
Wireless Simulation with ns-3

Assignment Submission Guidelines

• Write 1–2 page summary
• Report should include the following sections:
 – experiment setup and procedure (topology, issues, etc.)
 – results and answer the following question
 • first 10 lines of tcpdump output of any .pcap file
 • does app. data from src to dst go through AP? Why?
 – conclusions (what you learned, etc.)
• You can discuss with other students but ...
 ... everyone must submit individual report
• Attach .cc file along with your submission
• Send report in PDF to: GTA and cc: Dr. Sterbenz

Wireless Simulation with ns-3

EECS 882 Assignment Submission Guidelines

• Send only source files (.cc, .pl, .pdf, etc.)
 – this means no .zip, zipped, .tar files
 – no reason to send trace files
• Always to: GTA and cc: Dr. Sterbenz
• Brownie points for identifying and fixing ns-3 bugs
• ns-3 scripts will be graded based on
 – functionality
 • major grade will be deducted for errors!!!
 • warnings will reduce your grade as well
 – documentation
 • use sensible file names: e.g. lab1_ikus.cc
Wireless Simulation with ns-3

EECS 882 Commenting Guidelines

• Use comments as necessary:
 - Boilerplate... (optional)
 - //GNU release blah ...
 - /* File name: lab1_ikus.cc
 - Purpose: This is a sample script etc.
 - Author: Ima KU Student
 - Date: 19 September 2011
 - Version: 1 */
 - #include <iostream.h>

• Use comments for block of codes:
 - // This is an example comment for a block of code

Further Reading

• ns-3 main page (for documents, news, announcements)
 http://www.nsnam.org/

• ns-3 wiki (howtos, roadmap)
 http://www.nsnam.org/wiki/index.php/Main_Page

• Finish all tutorial chapters

• ns-3 users mailing list (usage, implementations, discussions)
 http://groups.google.com/group/ns-3-users

• ns-3 bug list (closed, open bugs)
 http://www.nsnam.org/bugzilla/
Acknowledgements

Some material in these foils comes from the ns-3 tutorial presentations from conferences, workshops:

- Tom Henderson,
 ns-3 tutorial
 SIMUTools 2009
 http://www.nsnam.org/tutorials.html

- Gustavo Carneiro,
 NS-3 Tutorial
 RTCM 2009
 http://telecom.inescporto.pt/~gjc/NS-3-RTCM.pdf

Other References

- C++ tutorials online
 - and many more links and books on the subject

- GDB
 - http://www.gnu.org/software/gdb/

- valgrind
 - http://valgrind.org/

- gnuplot
 - http://www.gnuplot.info/

- Python
 - http://www.python.org/