Tussle and Game Theory

Outline

TG.1 Motivation and tussle
TG.2 Rational choice
TG.3 Games
TG.4 Nash equilibrium

Primary references:
[O]=[O2004]
Tussle and Game Theory

Motivation and Tussle

TG.1 Motivation and tussle
TG.2 Rational choice
TG.3 Games
TG.4 Nash equilibrium
Tussle
Introduction and Motivation

- **Tussle** [CWSB2002]
 - Internet composed of multiple stakeholders
 - have competing interests
 - vie to maximise their own interest

Network Examples?
Tussle

Introduction and Motivation

- **Tussle** [CWSB2002]
 - Internet composed of multiple stakeholders
 - have competing interests
 - vie to maximise their own interest

- **Examples**
 - subscribers vs. service providers
 - subscribers vs. content providers
 - content providers vs. service providers
 - service providers vs. one another

- Modelled by *game theory*
Tussle and Game Theory
Rational Choice

TG.1 Motivation and tussle
TG.2 Rational choice
TG.3 Games
TG.4 Nash equilibrium
Rational Choice

Definition

- **Rational choice** is an economic definition
 - may not correspond with common use of “rational”

- Individual decision maker chooses actions
 - among available action set A
 - subject to constrained subset (e.g. sufficient income)
 - according to preferences
 - defined by a payoff function $u(a_i)$
 - ordinal relation (no sense of relative intensity of preference)
 - transitive relation: $u(a_i) > u(a_j) \land u(a_j) > u(a_k) \Rightarrow u(a_i) > u(a_k)$
Tussle and Game Theory

Games

TG.1 Motivation and tussle
TG.2 Rational choice
TG.3 Games
TG.4 Nash equilibrium
Games

Introduction

- **Strategic game**
 - set of players \(P \)
 - set of actions \(A \)
 - ordinal preferences over set of action profiles
 - rational choice
Prisoners’ Dilemma

Introduction

• Let’s play a game!
Prisoners’ Dilemma

Scenario

- Let’s play a game!
 - split into two groups (2 players)

- Scenario
 - each group (player) is a suspect of felony (bank robbery)
 - 3 or 4 years in prison
 - only if other player finks you out
 - enough evidence to convict you of misdemeanor (speeding)
 - 1 year in prison
Prisoner’s Dilemma

Actions

• Each player has two possible actions
 – quiet: say nothing about the other player
 – fink: agree to testify that other player is guilty of felony
Prisoner’s Dilemma

Consequences

- you will go free (plea bargain)
 - if you fink out the other player but they don’t fink you out
- you will go to prison for 1 year for misdemeanor unless
 - you fink out the other player but they don’t fink out you
- you will go to prison for only 3 years
 - if you fink them out and they fink you out
- you will go to prison for 4 years
 - if the other player finks you out but you remain quiet
Prisoner’s Dilemma
Preferences

- Preferences
 - you have five minutes to determine your preference
 - return with the choice among \{quiet, fink\} written on paper
Prisoner’s Dilemma

Preferences

• Preferences
 – you have five minutes to determine your preference
 – return with the choice among \{quiet, fink\} written on paper
 – desired payoff function order \(u_1(\text{you, other player}) \)
 • \(u_1(F, Q) > u_1(Q, Q) > u_1(F, F) > u_1(Q, F) \)

possible function?
Prisoner’s Dilemma
Preferences

- Preferences
 - you have five minutes to determine your preference
 - return with the choice among \{quiet, fink\} written on paper
 - desired payoff function order for player 1: \(u_1(a_1, a_2) \)
 - \(u_1(F, Q) > u_1(Q, Q) > u_1(F, F) > u_1(Q, F) \)
 - payoff functions with arbitrary ordinal values:
 - \(u_1(F, Q) = 3 \)
 - \(u_1(Q, Q) = 2 \)
 - \(u_1(F, F) = 1 \)
 - \(u_1(Q, F) = 0 \)
Prisoner’s Dilemma

Preferences

- Preferences
 - desired payoff function order for player 1: \(u_1(a_1, a_2) \)
 - \(u_1(F,Q) > u_1(Q,Q) > u_1(F,F) > u_1(Q,F) \)
 - payoff functions with arbitrary ordinal values:
 - \(u_1(F,Q) = 3, u_1(Q,Q) = 2, u_1(F,F) = 1, u_1(Q,F) = 0 \)
 - maximum payoff function is \(Q,Q = 2+2 = 4 \)

<table>
<thead>
<tr>
<th>Suspect 1</th>
<th>Quiet</th>
<th>Fink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiet</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>Fink</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Nash Equilibrium at \(F,F \)
Games
Types

- **Single** vs. **Iterated** game
 - whether game is repeated by same players
- **Sequential** vs. **Simultaneous** game
 - whether player make moves sequentially or in parallel
- **Perfect information**
 - whether players have full information
- **Zero-sum** game
 - loss/gain of one player balanced by gain/loss of others
- **Pareto-optimum**
 - not possible for any player to gain without another losing
Games

Dollar Auction

- Shall we play a game?
 - tic tac toe
 - chess
 - dollar auction
 - sequential game with perfect information
 - global thermonuclear war
Dollar Action

Scenario

• Let’s play a game!
 – entire class participates in the room (perfect information)

• Scenario
 – I have a crisp new dollar for someone to win
 – bidding starts at 10¢
 – high bidder wins
Games
Another Game

• Shall we play a game?
 – tic tac toe
 – chess
 – dollar auction
 – global thermonuclear war
Dollar Action

Scenario

- Let’s play a game!
 - entire class participates in the room (perfect information)
- Scenario
 - I have a crisp new dollar for someone to win
 - bidding starts at 10¢
 - high bidder wins
Dollar Action

Scenario

- Let’s play a game!
 - entire class participates in the room (perfect information)
- Scenario
 - I have a crisp new dollar for someone to win
 - bidding starts at 10¢
 - high bidder wins
 - but wait
 - I keep all bids, including from the loser
Dollar Action

Scenario

• Let’s play a game!
 – entire class participates in the room (perfect information)

• Scenario
 – I have a crisp new dollar for someone to win
 – bidding starts at 10¢
 – high bidder wins

 but wait
 – I keep all bids, including from the loser
 – even as the bids go above $1.00
Dollar Action
Scenario

• Let’s play a game!
 – entire class participates in the room (perfect information)

• Scenario
 – I have a crisp new dollar for someone to win
 – bidding starts at 10¢
 – high bidder wins

 but wait
 – I keep all bids, including from the loser
 – even as the bids go above $1.00

• *The only winning move is not to play*
Games
Mutually Assured Destruction

- Shall we play a game?
 - tic tac toe
 - chess
 - dollar auction
 - global thermonuclear war
 - War Games clip [http://www.youtube.com/watch?v=NHWjlCaIrQo]
Mutually Assured Destruction

Scenario

- Scenario
 - the east and the west both have lots of nuclear weapons
 - enough to obliterate the opponent
 - one side gets angry at the other and launches first strike

what happens next?
Mutually Assured Destruction

Scenario

- Scenario
 - the east and the west both have lots of nuclear weapons
 - enough to obliterate the opponent
 - one side gets angry at the other and launches first strike
 - the other side retaliates
 - with all its weapons so they are not destroyed on the ground
 - the first striker launches all its remaining nukes

- *The only winning move is not to play*
Tussle and Game Theory

Games

TG.1 Motivation and tussle
TG.2 Rational choice
TG.3 Games
TG.4 Nash equilibrium
Nash Equilibrium

Introduction

- Nash Equilibrium
 - player cannot do better by unilaterally changing strategy
Regular Networks

References and Further Reading

- Thanks to Anne-Marie Hoskinson suggestions on game-playing
End of Foils