Applications of the

Position Vector

Position vectors are particularly useful when we need to determine the directed distance between two arbitrary points in space.

If the location of point P_{A} is denoted by position vector \bar{r}_{A}, and the location of point P_{B} by position vector \bar{r}_{B}, then the directed distance from point P_{A} to point P_{B}, is:

$$
\bar{R}_{A B}=\bar{r}_{B}-\bar{r}_{A}
$$

We can use this directed distance $\bar{R}_{A B}$ to describe much about the relative locations of point P_{A} and P_{B} !

For example, the physical distance between these two points is simply the magnitude of this directed distance:

Likewise, we can specify the direction toward point P_{B}, with respect to point P_{A}, by find the unit vector $\hat{a}_{A B}$:

$$
\hat{a}_{A B}=\frac{\bar{R}_{A B}}{\left|\bar{R}_{A B}\right|}=\frac{\overline{r_{B}}-\bar{r}_{A}}{\left|\overline{r_{B}}-\bar{r}_{A}\right|}
$$

