Applications of the Position Vector

Position vectors are particularly useful when we need to determine the directed distance between two arbitrary points in space.

If the location of point P_A is denoted by position vector \vec{r}_A, and the location of point P_B by position vector \vec{r}_B, then the directed distance from point P_A to point P_B, is:

$$\vec{R}_{AB} = \vec{r}_B - \vec{r}_A$$

We can use this directed distance \vec{R}_{AB} to describe much about the relative locations of point P_A and P_B!
For example, the physical **distance** between these two points is simply the magnitude of this directed distance:

\[d = |\vec{R}_{AB}| = |\vec{r}_B - \vec{r}_A| \]

Likewise, we can specify the **direction** toward point \(P_B \), with respect to point \(P_A \), by find the **unit vector** \(\hat{a}_{AB} \):

\[\hat{a}_{AB} = \frac{\vec{R}_{AB}}{|\vec{R}_{AB}|} = \frac{\vec{r}_B - \vec{r}_A}{|\vec{r}_B - \vec{r}_A|} \]