<u>Applications of the</u> <u>Position Vector</u>

Position vectors are **particularly useful** when we need to determine the directed distance between **two** arbitrary points in space. Λ_z

If the location of **point** P_A is denoted by position vector $\overline{r_A}$, and the location of **point** P_B by position vector $\overline{r_B}$, then the **directed distance** from point P_A to point P_B , is:

$$\overline{R}_{AB} = \overline{r}_{B} - \overline{r}_{A}$$

We can use this directed distance \overline{R}_{AB} to describe **much** about the relative locations of point P_A and P_B!

For example, the physical distance between these two points is simply the magnitude of this directed distance: Ż d $P_A(x,y,z)$ $P_B(x,y,z)$ $d = \left| \overline{R_{AB}} \right| = \left| \overline{r_B} - \overline{r_A} \right|$ X Likewise, we can specify the **direction** toward point P_B , with **respect** to point P_A , by find the **unit vector** \hat{a}_{AB} : Ζ â_{AB} $P_A(x,y,z)$ $\mathsf{P}_{\mathsf{B}}(x,y,z)$ $\overline{r_{B}}$ \bar{r}_{A} $\hat{\boldsymbol{a}}_{\boldsymbol{A}\boldsymbol{B}} = \frac{\overline{R}_{\boldsymbol{A}\boldsymbol{B}}}{|\overline{R}_{\boldsymbol{A}\boldsymbol{B}}|} = \frac{\overline{r}_{\boldsymbol{B}} - \overline{r}_{\boldsymbol{A}}}{|\overline{r}_{\boldsymbol{B}} - \overline{r}_{\boldsymbol{A}}|}$ <u>X</u> XL