Curl in Coordinate Systems

Consider now the curl of vector fields expressed using our coordinate systems.

Cartesian

$$
\begin{aligned}
\nabla \times \boldsymbol{A}(\bar{r}) & =\left[\frac{\partial A_{y}(\bar{r})}{\partial \boldsymbol{z}}-\frac{\partial A_{z}(\bar{r})}{\partial y}\right] \hat{a}_{x} \\
& +\left[\frac{\partial A_{z}(\bar{r})}{\partial x}-\frac{\partial A_{x}(\bar{r})}{\partial \boldsymbol{z}}\right] \hat{a}_{y} \\
& +\left[\frac{\partial A_{x}(\bar{r})}{\partial y}-\frac{\partial A_{y}(\bar{r})}{\partial x}\right] \hat{a}_{z}
\end{aligned}
$$

Cylindrical

$$
\begin{aligned}
\nabla \times \boldsymbol{A}(\bar{r}) & =\left[\frac{1}{\rho} \frac{\partial \boldsymbol{A}_{z}(\bar{r})}{\partial \phi}-\frac{\partial A_{\phi}(\bar{r})}{\partial \boldsymbol{z}}\right] \hat{a}_{\rho} \\
& +\left[\frac{\partial A_{\rho}(\bar{r})}{\partial \boldsymbol{z}}-\frac{\partial \boldsymbol{A}_{z}(\bar{r})}{\partial \rho}\right] \hat{a}_{\phi} \\
& +\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \boldsymbol{A}_{\phi}(\bar{r})\right)-\frac{1}{\rho} \frac{\partial A_{\rho}(\bar{r})}{\partial \phi}\right] \hat{a}_{z}
\end{aligned}
$$

Spherical

$$
\begin{aligned}
\nabla \times \mathbf{A}(\bar{r}) & =\left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}(\bar{r})\right)-\frac{1}{r \sin \theta} \frac{\partial A_{\theta}(\bar{r})}{\partial \phi}\right] \hat{a}_{r} \\
& +\left[\frac{1}{r \sin \theta} \frac{\partial A_{r}(\bar{r})}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}(\bar{r})\right)\right] \hat{a}_{\theta} \\
& +\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\theta}(\bar{r})\right)-\frac{1}{r} \frac{\partial A_{r}(\bar{r})}{\partial \theta}\right] \hat{a}_{\phi}
\end{aligned}
$$

Yikes! These expressions are very complex. Precision, organization, and patience are required to correctly evaluate the curl of a vector field!

