Cylindrical Base Vectors

Cylindrical base vectors are the natural base vectors of a cylinder.

\[\hat{a}_\rho \] points in the direction of increasing \(\rho \). In other words, \(\hat{a}_\rho \) points away from the \(z \)-axis.

\[\hat{a}_\phi \] points in the direction of increasing \(\phi \). This is precisely the same base vector we described for spherical base vectors.

\[\hat{a}_z \] points in the direction of increasing \(z \). This is precisely the same base vector we described for Cartesian base vectors.
It is evident, that like spherical base vectors, the cylindrical base vectors are dependent on position. A vector that points away from the z-axis (e.g., \(\hat{a}_\rho \)), will point in a direction that is dependent on where we are in space!

We can express cylindrical base vectors in terms of Cartesian base vectors. First, we find that:

\[
\begin{align*}
\hat{a}_\rho \cdot \hat{x} &= \cos \phi & \hat{a}_\phi \cdot \hat{x} &= -\sin \phi & \hat{a}_z \cdot \hat{x} &= 0 \\
\hat{a}_\rho \cdot \hat{y} &= \sin \phi & \hat{a}_\phi \cdot \hat{y} &= \cos \phi & \hat{a}_z \cdot \hat{y} &= 0 \\
\hat{a}_\rho \cdot \hat{z} &= 0 & \hat{a}_\phi \cdot \hat{z} &= 0 & \hat{a}_z \cdot \hat{z} &= 1
\end{align*}
\]

We can use these results to write cylindrical base vectors in terms of Cartesian base vectors, or vice versa!

For example,

\[
\hat{a}_\rho = (\hat{a}_\rho \cdot \hat{x}) \hat{x} + (\hat{a}_\rho \cdot \hat{y}) \hat{y} + (\hat{a}_\rho \cdot \hat{z}) \hat{z} = \cos \phi \hat{x} + \sin \phi \hat{y}
\]

or,

\[
\hat{a}_x = (\hat{a}_x \cdot \hat{a}_\rho) \hat{a}_\rho + (\hat{a}_x \cdot \hat{a}_\phi) \hat{a}_\phi + (\hat{a}_x \cdot \hat{a}_z) \hat{a}_z = \cos \phi \hat{a}_\rho - \sin \phi \hat{a}_\phi
\]
Finally, we can write *cylindrical* base vectors in terms of *spherical* base vectors, or vice versa, using the following relationships:

\[
\begin{align*}
\hat{a}_\rho \cdot \hat{a}_r &= \sin \theta \\
\hat{a}_\phi \cdot \hat{a}_r &= 0 \\
\hat{a}_z \cdot \hat{a}_r &= \cos \theta \\
\hat{a}_\rho \cdot \hat{a}_\theta &= \cos \theta \\
\hat{a}_\phi \cdot \hat{a}_\theta &= 0 \\
\hat{a}_z \cdot \hat{a}_\theta &= -\sin \theta \\
\hat{a}_\rho \cdot \hat{a}_\phi &= 0 \\
\hat{a}_\phi \cdot \hat{a}_\phi &= 1 \\
\hat{a}_z \cdot \hat{a}_\phi &= 0
\end{align*}
\]

e.g.,

\[
\begin{align*}
\hat{a}_r &= (\hat{a}_\rho \cdot \hat{a}_r) \hat{a}_r + (\hat{a}_\phi \cdot \hat{a}_\theta) \hat{a}_\theta + (\hat{a}_z \cdot \hat{a}_\phi) \hat{a}_\phi \\
&= \sin \theta \hat{a}_r + \cos \theta \hat{a}_\theta \\
\hat{a}_\theta &= (\hat{a}_\rho \cdot \hat{a}_r) \hat{a}_r + (\hat{a}_\phi \cdot \hat{a}_\theta) \hat{a}_\theta + (\hat{a}_z \cdot \hat{a}_\phi) \hat{a}_\phi \\
&= \cos \theta \hat{a}_r - \sin \theta \hat{a}_z
\end{align*}
\]