Cylindrical Base Vectors

Cylindrical base vectors are the natural base vectors of a cylinder.
\hat{a}_{ρ} points in the direction of increasing ρ. In other words, \hat{a}_{ρ} points away from the z-axis.
\hat{a}_{ϕ} points in the direction of increasing ϕ. This is precisely the same base vector we described for spherical base vectors.
\hat{a}_{z} points in the direction of increasing \boldsymbol{z}. This is precisely the same base vector we described for Cartesian base vectors.

It is evident, that like spherical base vectors, the cylindrical base vectors are dependent on position. A vector that points away from the z-axis (e.g., \hat{a}_{p}), will point in a direction that is dependent on where we are in space!

We can express cylindrical base vectors in terms of Cartesian base vectors. First, we find that:

$$
\begin{array}{lll}
\hat{a}_{\rho} \cdot \hat{a}_{x}=\cos \phi & \hat{a}_{\phi} \cdot \hat{a}_{x}=-\sin \phi & \hat{a}_{z} \cdot \hat{a}_{x}=0 \\
\hat{a}_{\rho} \cdot \hat{a}_{y}=\sin \phi & \hat{a}_{\phi} \cdot \hat{a}_{y}=\cos \phi & \hat{a}_{z} \cdot \hat{a}_{y}=0 \\
\hat{a}_{\rho} \cdot \hat{a}_{z}=0 & \hat{a}_{\phi} \cdot \hat{a}_{z}=0 & \hat{a}_{z} \cdot \hat{a}_{z}=1
\end{array}
$$

We can use these results to write cylindrical base vectors in terms of Cartesian base vectors, or vice versa!

For example,

$$
\begin{aligned}
\hat{a}_{p} & =\left(\hat{a}_{p} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{p} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{p} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \phi \hat{a}_{x}+\sin \phi \hat{a}_{y}
\end{aligned}
$$

or,

$$
\begin{aligned}
\hat{a}_{x} & =\left(\hat{a}_{x} \cdot \hat{a}_{\rho}\right) \hat{a}_{\rho}+\left(\hat{a}_{x} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}+\left(\hat{a}_{x} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \phi \hat{a}_{\rho}-\sin \phi \hat{a}_{\phi}
\end{aligned}
$$

Finally, we can write cylindrical base vectors in terms of spherical base vectors, or vice versa, using the following relationships:

$$
\begin{array}{lll}
\hat{a}_{\rho} \cdot \hat{a}_{r}=\sin \theta & \hat{a}_{\phi} \cdot \hat{a}_{r}=0 & \hat{a}_{z} \cdot \hat{a}_{r}=\cos \theta \\
\hat{a}_{\rho} \cdot \hat{a}_{\theta}=\cos \theta & \hat{a}_{\phi} \cdot \hat{a}_{\theta}=0 & \hat{a}_{z} \cdot \hat{a}_{\theta}=-\sin \theta \\
\hat{a}_{\rho} \cdot \hat{a}_{\phi}=0 & \hat{a}_{\phi} \cdot \hat{a}_{\phi}=1 & \hat{a}_{z} \cdot \hat{a}_{\phi}=0
\end{array}
$$

e.g.,

$$
\begin{aligned}
\hat{a}_{p} & =\left(\hat{a}_{p} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{p} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{p} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& =\sin \theta \hat{a}_{r}+\cos \theta \hat{a}_{\theta} \\
\hat{a}_{\theta} & =\left(\hat{a}_{\theta} \cdot \hat{a}_{\rho}\right) \hat{a}_{\rho}+\left(\hat{a}_{\theta} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}+\left(\hat{a}_{\theta} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \theta \hat{a}_{\rho}-\sin \theta \hat{a}_{z}
\end{aligned}
$$

