Cylindrical Coordinates

You're probably also familiar with polar coordinates. In twodimensions, we can also specify a point with two scalar values, generally called ρ and ϕ.

We can extend this to three-dimensions, by adding a third scalar value z. This method for identifying the position of a point is referred to as cylindrical coordinates.

Note the physical significance of each parameter of cylindrical coordinates:

1. The value ρ indicates the distance of the point from the z axis ($0 \leq \rho<\infty$).
2. The value ϕ indicates the rotation angle around the z-axis ($0 \leq \phi<2 \pi$), precisely the same as the angle ϕ used in spherical coordinates.
3. The value z indicates the distance of the point from the $x-y(z=0)$ plane $(-\infty<z<\infty)$, precisely the same as the coordinate z used in Cartesian coordinates

Once all three values are specified, the position of a point is uniquely identified.

