Differential Surface

Vectors

Consider a rectangular surface, oriented in some arbitrary direction:

We can describe this surface using vectors! One vector (say A), is a directed distance that denotes the length (i.e, magnitude) and orientation of one edge of the rectangle, while another directed distance (say B) denotes the length and orientation of the other edge.

Say we take the cross-product of these two vectors $(A \times B=C)$.

Q: What does this vector C represent?
A: Look at the definition of cross product!

$$
\begin{aligned}
& \boldsymbol{C}=\mathbf{A} \times \mathbf{B} \\
& =\hat{a}_{n}|\mathbf{A}| \mathbf{B} \mid \sin \theta_{A B} \\
& =\hat{a}_{n}|\mathbf{A}||\mathbf{B}|
\end{aligned}
$$

Note that:

$$
|\boldsymbol{C}|=|\boldsymbol{A}||\mathbf{B}|
$$

The magnitude of vector \boldsymbol{C} is therefore product of the lengths of each directed distance-the area of the rectangle!

Likewise, $\boldsymbol{C} \cdot \mathbf{A}=0$ and $\boldsymbol{C} \cdot \mathbf{B}=0$, therefore vector \boldsymbol{C} is orthogonal (i.e., "normal") to the surface of the rectangle.

As a result, vector C indicates both the size and the orientation of the rectangle.

The differential surface vector

For example, consider the very small rectangular surface resulting from two differential displacement vectors, say $\overline{d \ell}$ and $\overline{d m}$.

For example, consider the situation if $\overline{d \ell}=\overline{d x}$ and $\overline{d m}=\overline{d y}$:

$$
\begin{aligned}
\overline{d s} & =\overline{d x} \times \overline{d y} \\
& =\left(\hat{a}_{x} \times \hat{a}_{y}\right) d x d y \\
& =\hat{a}_{z} d x d y
\end{aligned}
$$

In other words the differential surface element has an area equal to the product $d x d y$, and a normal vector that points in the \hat{a}_{z} direction.

The differential surface vector $\overline{d s}$ specifies the size and orientation of a small (i.e., differential) patch of area, located on some arbitrary surface S.

We will use the differential surface vector in evaluating surface integrals of the type:

$$
\iint_{s} A\left(\bar{r}_{s}\right) \cdot \overline{d s}
$$

