Differential Surface

<u>Vectors</u>

Consider a **rectangular surface**, oriented in some arbitrary direction:

B

C=A×B

We can describe this surface using **vectors**! One vector (say **A**), is a directed distance that denotes the **length** (i.e, magnitude) and **orientation** of one edge of the rectangle, while another directed distance (say **B**) denotes the length and orientation of the other edge.

Δ

Say we take the **cross-product** of these two vectors (**A**×**B**=**C**).

Q: What does this vector C represent?

A: Look at the **definition** of cross product!

1/3

Note that:

|C| = |A||B|

The magnitude of vector **C** is therefore product of the lengths of each directed distance—the **area of the rectangle**!

Likewise, $\mathbf{C} \cdot \mathbf{A} = 0$ and $\mathbf{C} \cdot \mathbf{B} = 0$, therefore vector \mathbf{C} is orthogonal (i.e., "normal") to the surface of the rectangle.

As a result, vector **C** indicates **both** the **size** and the **orientation** of the rectangle.

The differential surface vector

For example, consider the **very small** rectangular surface resulting from two differential displacement vectors, say $\overline{d\ell}$ and \overline{dm} .

For example, consider the situation if $\overline{d\ell} = \overline{dx}$ and $\overline{dm} = \overline{dy}$:

$$\overline{ds} = \overline{dx} \times \overline{dy}$$
$$= \left(\hat{a}_x \times \hat{a}_y\right) dx dy$$
$$= \hat{a}_z dx dy$$

In other words the **differential** surface element has an **area** equal to the product dx dy, and a **normal vector** that points in the \hat{a}_z direction.

The differential surface vector \overline{ds} specifies the size and orientation of a small (i.e., **differential**) **patch** of area, located on some arbitrary **surface** S.

We will use the differential surface vector in evaluating surface integrals of the type:

