Example: Ampere's Law of Force

Let's again consider Ampere's Law of Force in the following form:

$$
\begin{aligned}
d \mathrm{~F}_{1} & =\frac{\mu_{0} I_{1} I_{2}}{4 \pi} \frac{\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}}-\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}}{R^{2}} \\
& =\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}}-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}
\end{aligned}
$$

It is apparent that we can consider the force on filament 1 to consist of two forces, i.e.:

$$
d F_{1}=d F_{1}^{a}+d F_{1}^{b}
$$

where

$$
d F_{1}^{a}=\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}}
$$

and

$$
d F_{1}^{b}=-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}
$$

Therefore, the force on filament 1 has a component in the direction $\overline{d l_{2}}$ (i.e., in the direction of current filament 2), and a component in the direction $-\hat{a}_{21}$.

So, let's consider several examples:
Example 1: Filament 2 points toward filament 1

Therefore, since $\overline{d \ell_{2}}=\left|\overline{d \ell_{2}}\right| \hat{a}_{21}$:

$$
\begin{aligned}
\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell}_{2} & =\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right)\left|\overline{d \ell_{2}}\right| \hat{a}_{21} \\
& =\left(\overline{d \ell_{1}} \cdot\left|\overline{d \ell_{2}}\right| \hat{a}_{21}\right) \hat{a}_{21} \\
& =\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}
\end{aligned}
$$

and therefore:

$$
\begin{aligned}
d F_{1}^{a} & =-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}} \\
& =-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21} \\
& =-d F_{1}^{b}
\end{aligned}
$$

And thus:

$$
\begin{aligned}
d F_{1} & =d F_{1}^{a}+d F_{1}^{b} \\
& =-d F_{1}^{b}+d F_{1}^{b}=0
\end{aligned}
$$

In other words, if filament 2 points at filament 1, then the force on filament 1 is zero, regardless of the orientation of filament 1.

Another way of saying this is that only the component of $I_{2} \bar{d} \ell_{2}$ that is orthogonal to \hat{a}_{21} can exert of force on filament 1.

exerts no force.
Example 2: Filament 1 is parallel to filament 2

Therefore,

$$
\overline{d \ell_{1}} \cdot \hat{a}_{21}=0
$$

So:

$$
d F_{1}^{a}=\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}}=0
$$

But,

$$
\overline{d \ell_{1}} \cdot \overline{d \ell_{2}} \neq 0
$$

therefore:

$$
d F_{1}^{b}=-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21} \neq 0
$$

Thus, $d F_{1}=d F_{1}^{b}$, applying a force in the direction $-\hat{a}_{21}$!

Filament 1 is attracted to filament 2 !

For the same reasons, filament 2 is attracted to filament 1:

But, we find that the two filaments repel if they point in opposite directions:

Example 3: Filament 1 is parallel to \hat{a}_{21} and orthogonal to filament 2.

Therefore,

$$
\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}=0
$$

So:

$$
d F_{1}^{b}=-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}=0
$$

But,

$$
\overline{d \ell_{1}} \cdot \hat{a}_{21} \neq 0
$$

thus:

$$
d F_{1}^{a}=\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}} \neq 0
$$

Therefore, $d F_{1}=d F_{1}{ }^{a}$, applying a force in the direction $\overline{d \ell_{2}}$:

Note however, the force on filament $\mathbf{2}$ is zero!

Example 4: Filament 1 is orthogonal to \hat{a}_{21} and orthogonal to filament 2.

In this case, we find:

$$
\overline{d \ell_{1}} \cdot \hat{a}_{21}=0
$$

so:

$$
d F_{1}^{a}=\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \hat{a}_{21}\right) \overline{d \ell_{2}}=0
$$

Likewise,

$$
\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}=0
$$

thus:

$$
d F_{1}^{b}=-\left(\frac{\mu_{0} I_{1} I_{2}}{4 \pi R^{2}}\right)\left(\overline{d \ell_{1}} \cdot \overline{d \ell_{2}}\right) \hat{a}_{21}=0
$$

Therefore, the total force on filament 1 is zero:

$$
d F_{1}=d F_{1}^{a}+d F_{1}^{b}=0
$$

For the same reasons, we find that the force on filament 2 due to filament 1 is also zero (i.e., $d F_{2}=0$).

