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Example: Charge Filled 
Parallel Plates 

 
Consider now a problem similar to the previous example (i.e., 
dielectric filled parallel plates), with the exception that the 
space between the infinite, conducting parallel plates is filled 
with free charge, with a density: 
 

( )r      (-d 0)v z zρ = − < <0ε  
 
 
 
 
 
 
 
 
 
 

Q:  How do we determine the fields within the parallel plates 
for this problem? 
 
A: Same as before!  However, since the charge density between 
the plates is not equal to zero, we recognize that the electric 
potential field must satisfy Poisson’s equation: 
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For the specific charge density ( )rv zρ = − 0ε  : 
 

( ) ( )2 rr vV zρ−
∇ = =

0ε
 

 
Since both the charge density and the plate geometry are 
independent of coordinates x and y, we know the electric 
potential field will be a function of coordinate z only (i.e., 
( ) ( )rV V z= ). 

 
Therefore, Poisson’s equation becomes: 
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We can solve this differential equation by first integrating both 
sides: 
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And then integrating a second time: 
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Note that this expression for ( )rV  satisfies Poisson’s equation 
for this case.  The question remains, however: what are the 
values of constants 1 2 and C C ? 
 
We find them in the same manner as before—boundary 
conditions! 
 
Note the boundary conditions for this problem are: 
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Therefore, we can construct two equations with two unknowns: 
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It is evident that C2 = 0, therefore constant C1 is: 
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The electric potential field between the two plates is 
therefore: 
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Performing our sanity check, we find: 
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and  
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From this result, we can determine the electric field ( )rE , the 
electric flux density ( )rD , and the surface charge density 

( )rsρ , as before. 
 
Note, however, that the permittivity of the material between 
the plates is 0ε , as the “dielectric” between the plates is free-
space.  


