Example: Dielectric Filled Parallel Plates

Consider two infinite, parallel conducting plates, spaced a distance \(d \) apart. The region between the plates is filled with a dielectric \(\varepsilon \). Say a voltage \(V_0 \) is placed across these plates.

Q: **What electric potential field \(V(\vec{r}) \), electric field \(E(\vec{r}) \) and charge density \(\rho_s(\vec{r}) \) is produced by this situation?**

A: We must solve a boundary value problem! We must find solutions that:

- a) Satisfy the differential equations of electrostatics (e.g., Poisson’s, Gauss’s).
- b) Satisfy the electrostatic boundary conditions.
Q: Yikes! Where do we even start?

A: We might start with the electric potential field \(V(r) \), since it is a scalar field.

a) The electric potential function must satisfy Poisson’s equation:

\[
\nabla^2 V(r) = \frac{-\rho_v(r)}{\varepsilon}
\]

b) It must also satisfy the boundary conditions:

\[
V(z = -d) = V_0 \quad V(z = 0) = 0
\]

Consider first the dielectric region \((-d < z < 0)\). Since the region is a dielectric, there is no free charge, and:

\[
\rho_v(r) = 0
\]

Therefore, Poisson’s equation reduces to Laplace’s equation:

\[
\nabla^2 V(r) = 0
\]

This problem is greatly simplified, as it is evident that the solution \(V(r) \) is independent of coordinates \(x \) and \(y \). In other words, the electric potential field will be a function of coordinate \(z \) only:

\[
V(r) = V(z)
\]
This makes the problem much easier! Laplace’s equation becomes:

\[\nabla^2 V (\mathbf{r}) = 0 \]
\[\nabla^2 V (z) = 0 \]
\[\frac{\partial^2 V (z)}{\partial z^2} = 0 \]

Integrating both sides of Laplace’s equation, we get:

\[\int \frac{\partial^2 V (z)}{\partial z^2} \, dz = \int 0 \, dz \]
\[\frac{\partial V (z)}{\partial z} = C_1 \]

And integrating again we find:

\[\int \frac{\partial V (z)}{\partial z} \, dz = \int C_1 \, dz \]
\[V (z) = C_1 z + C_2 \]

We find that the equation \(V (z) = C_1 z + C_2 \) will satisfy Laplace’s equation (try it!). We must now apply the boundary conditions to determine the value of constants \(C_1 \) and \(C_2 \).

We know that the value of the electrostatic potential at every point on the top \((z = -d) \) plate is \(V (-d) = V_0 \), while the electric potential on the bottom plate \((z = 0) \) is zero \((V (0) = 0) \). Therefore:
\[V(z = -d) = -C_1d + C_2 = V_0 \]

\[V(z = 0) = C_1(0) + C_2 = 0 \]

Two equations and two unknowns \((C_1\text{ and } C_2)!\)

Solving for \(C_1\) and \(C_2\) we get:

\[C_2 = 0 \quad \text{and} \quad C_1 = -\frac{V_0}{d} \]

and therefore, the electric potential field within the dielectric is found to be:

\[V(\vec{r}) = \frac{-V_0 z}{d} \quad (-d \leq z \leq 0) \]

Before we proceed, let’s do a sanity check!

In other words, let’s evaluate our answer at \(z = 0\) and \(z = -d\), to make sure our result is correct:

\[V(z = -d) = \frac{-V_0(-d)}{d} = V_0 \quad \checkmark \]

and

\[V(z = 0) = \frac{-V_0(0)}{d} = 0 \quad \checkmark \]
Now, we can find the electric field within the dielectric by taking the gradient of our result:

$$E(r) = -\nabla V(r) = \frac{V_0}{d} \hat{a}_z \quad (-d \leq z \leq 0)$$

And thus we can easily determine the electric flux density by multiplying by the dielectric of the material:

$$D(r) = \varepsilon E(r) = \varepsilon \frac{V_0}{d} \hat{a}_z \quad (-d \leq z \leq 0)$$

Finally, we need to determine the charge density that actually created these fields!

Q: Charge density ?! I thought that we already determined that the charge density $\rho_v(r)$ is equal to zero?

A: We know that the free charge density within the dielectric is zero—but there must be charge somewhere, otherwise there would be no fields!
Recall that we found that at a conductor/dielectric interface, the surface charge density on the conductor is related to the electric flux density in the dielectric as:

\[D_n = \hat{a}_n \cdot \mathbf{D}(\mathbf{r}) = \rho_s(\mathbf{r}) \]

First, we find that the electric flux density on the bottom surface of the top conductor (i.e., at \(z = -d' \)) is:

\[\mathbf{D}(\mathbf{r}) \bigg|_{z=-d'} = \frac{\varepsilon V_0}{d} \hat{a}_z \bigg|_{z=-d'} = \frac{\varepsilon V_0}{d} \hat{a}_z \]

For every point on bottom surface of the top conductor, we find that the unit vector normal to the conductor is:

\[\hat{a}_n = \hat{a}_z \]

Therefore, we find that the surface charge density on the bottom surface of the top conductor is:

\[\rho_{s+}(\mathbf{r}) = \hat{a}_n \cdot \mathbf{D}(\mathbf{r}) \bigg|_{z=-d'} = \hat{a}_z \cdot \hat{a}_z \frac{\varepsilon V_0}{d} = \frac{\varepsilon V_0}{d} \quad (z = -d) \]
Likewise, we find the unit vector \textbf{normal} to the \textit{top} surface of the \textbf{bottom} conductor is (do you see why):

\[\hat{a}_n = -\hat{a}_z \]

Therefore, evaluating the \textbf{electric flux density} on the top surface of the bottom conductor (i.e., \(z = 0 \)), we find:

\[
\rho_s - (\vec{r}) = \hat{a}_n \cdot \mathbf{D}(\vec{r})\bigg|_{z=0} \\
= -\hat{a}_z \cdot \hat{a}_z \frac{\varepsilon V_0}{d} \\
= \frac{-\varepsilon V_0}{d} \quad (z = 0)
\]

We should \textbf{note} several things about these solutions:

1) \(\nabla \times \mathbf{E}(\vec{r}) = 0 \)

2) \(\nabla \cdot \mathbf{D}(\vec{r}) = 0 \) and \(\nabla^2 V(\vec{r}) = 0 \)

3) \(\mathbf{D}(\vec{r}) \) and \(\mathbf{E}(\vec{r}) \) are \textbf{normal} to the surface of the conductor (i.e., their \textbf{tangential} components are equal to \textbf{zero}).

4) The \textbf{electric field} is precisely the \textbf{same} as that given by using superposition and eq. 4.20 in section 4-5!
I.E.:

\[
E(\vec{r}) = \frac{\rho_{s+}}{2\varepsilon} \hat{a}_z - \frac{\rho_{s-}}{2\varepsilon} \hat{a}_z = \frac{V_0}{d} \hat{a}_z \quad (-d < z < 0)
\]

In other words, the fields \(E(\vec{r}) \), \(D(\vec{r}) \), and \(V(\vec{r}) \) are attributable to charge densities \(\rho_{s+}(\vec{r}) \) and \(\rho_{s-}(\vec{r}) \).