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Example: Dielectric Filled 
Parallel Plates 

 
Consider two infinite, parallel conducting plates, spaced a 
distance d apart. The region between the plates is filled with a 
dielectric ε .  Say a voltage V0 is placed across these plates. 
 
 
 
 
 
 
 
 
 
 
 
Q: What electric potential field ( )rV , electric field ( )rE  
and charge density ( )rsρ  is produced by this situation? 
 
A:  We must solve a boundary value problem !  We must 
find solutions that: 
 

a) Satisfy the differential equations of electrostatics 
(e.g., Poisson’s, Gauss’s).  
 
b)  Satisfy the electrostatic boundary conditions. 

ε  

+ 
_ 0V  

z 

z=0 

z=-d 
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Q: Yikes! Where do we even start ? 
 
A: We might start with the electric potential field ( )rV , 
since it is a scalar field. 
 

a)  The electric potential function must satisfy 
Poisson’s equation: 

 

( ) ( )2 rr vV ρ−
∇ =

ε
 

 
 b) It must also satisfy the boundary conditions: 
 

( ) ( )0               0 0 V z d V V z= − = = =  
 

Consider first the dielectric region ( 0d z− < < ).  Since the 
region is a dielectric, there is no free charge, and: 
 

( )r 0vρ =  
 

Therefore, Poisson’s equation reduces to Laplace’s 
equation: 

( )2 r 0V∇ =  
 

This problem is greatly simplified, as it is evident that the 
solution ( )rV  is independent of coordinates  and yx .  In 
other words, the electric potential field will be a function 
of coordinate z only: 

( ) ( )rV V z=  
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This make the problem much easier!  Laplace’s equation 
becomes: 
 

( )
( )

( )

2

2

2

2

r 0
0

0

V
V z
V z

z

∇ =

∇ =

∂
=

∂

 

Integrating both sides of Laplace’s equation, we get: 
 

( )

( )

2

2

1

0V z dz dz
z

V z C
z

∂
=

∂
∂

=
∂

∫ ∫
 

 
And integrating again we find: 
 

( )

( )

1

1 2

V z dz C dz
z

V z C z C

∂
=

∂
= +

∫ ∫  

 
We find that the equation ( ) 1 2V z C z C= +  will satisfy Laplace’s 
equation  (try it!).  We must now apply the boundary conditions 
to determine the value of constants C1 and C2.  
 
We know that the value of the electrostatic potential at every 
point on the top (z =-d) plate is  V (-d)=V0, while the electric 
potential on the bottom plate (z =0) is zero (V (0) =0 ).  
Therefore: 
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( )

( ) ( )

1 2 0

1 20 0 0

V z d C d C V

V z C C

= − = − + =

= = + =

 

 
Two equations and two unknowns (C1 and C2)! 
 
Solving for C1 and C2 we get: 
 

0
2 10   and    VC C

d
= = −  

 
and therefore, the electric potential field within the dielectric 
is found to be: 
 
 

( ) ( )0r       0V zV d z
d
−

= − ≤ ≤  

 
 

Before we proceed, let’s do a sanity check! 
 
In other words, let’s evaluate our answer at z = 0 and z = -d, 
to make sure our result is correct: 
 

( ) ( )0
0      

V dV z d V
d

− −
= − = =        

and 

( ) ( )0 0
0     0  

VV z
d

−
= = =  
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Now, we can find the electric field within the dielectric by 
taking the gradient of our result: 
 
 

( ) ( ) ( )0r r   0z
VV a d z
d

= −∇ = − ≤ ≤E ˆ  

 
 
And thus we can easily determine the electric flux density 
by multiplying by the dielectric of the material: 
 
 
 

( ) ( ) ( )0r r     0z
V a d z
d

= = − ≤ ≤D E ˆ
ε

ε  

 
 
 
Finally, we need to determine the charge density that 
actually created these fields! 
 
Q: Charge density !?!  I thought that we already 
determined that the charge density ( )rvρ  is equal to zero? 
 
A:  We know that the free charge density within the 
dielectric is zero—but there must be charge somewhere, 
otherwise there would be no fields! 
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Recall that we found that at a conductor/dielectric interface, 
the surface charge density on the conductor is related to the 
electric flux density in the dielectric as: 
 

( ) ( )r rˆn n sD a ρ= ⋅ =D  
 
 

First, we find that the electric flux density on the bottom 
surface of the top conductor (i.e., at z d= − ) is: 
 

( ) 0 0r z zz d
z d

V Va a
d d=−

=−

= =D ˆ ˆ
ε ε  

 
For every point on bottom surface of the top conductor, we 
find that the unit vector normal to the conductor is: 
 

ˆ ˆn za a=  
 
 Therefore, we find that the surface charge density on the 
bottom surface of the top conductor is: 
 
 

( ) ( )

( )

0

0

r r

     

s n

z z

z d
a

Va a
d

V z d
d

ρ + =−
= ⋅

= ⋅

= = −

Dˆ

ˆ ˆ
ε

ε
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Likewise, we find the unit vector normal to the top surface of 
the bottom conductor is (do you see why): 
 

ˆ ˆn za a= −  
 

Therefore, evaluating the electric flux density on the top 
surface of the bottom conductor (i.e., 0z = ), we find: 
 
 

( ) ( )

( )

0

0

0

r r

     0

s n z

z z

a

Va a
d

V z
d

ρ − =
= ⋅

= − ⋅

= =

Dˆ

ˆ ˆ
ε

−ε

 

 
 

  
We should note several things about these solutions: 
 
1)  ( )x r 0∇ =E  
 
2)  ( ) ( )2r 0  and  r 0V∇ ⋅ = ∇ =D  
 
3)  ( ) ( )r  and rD E  are normal to the surface of the conductor 
(i.e., their tangential components are equal to zero). 
 
4)  The electric field is precisely the same as that given by 
using superposition and eq. 4.20 in section 4-5! 



11/8/2004 Example Dielectric Filled Parallel Plates 8/8 

Jim Stiles The Univ. of Kansas Dept. of EECS 
 

I.E.: 
 

( ) ( )0r   0ˆ ˆ ˆs s
z z z

Va a a d z
d

ρ ρ+ −= − = − < <E
2ε 2ε  

 
In other words, the fields ( ) ( ) ( )r , r , and rVE D  are 
attributable to charge densities ( ) ( )r  and r  s sρ ρ+ − . 
 
 
 
 
 
 

 
 
 

ε

+ 
_ 0V

z 

z=0 

z=-d 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
   

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
    

( )rE

( )rsρ +  

( )rsρ −  


