Example: Line Integrals of Conservative Fields

Consider the vector field $\boldsymbol{A}(\bar{r})=\nabla\left(x^{2}+y^{2}\right) z$.

Evaluate the contour integral:

$$
\int_{C} A(\bar{r}) \cdot \overline{d \ell}
$$

where $\boldsymbol{A}(\bar{r})=\nabla\left(x^{2}+y^{2}\right) z$, and contour C is:

The beginning of contour C is the point denoted as:

$$
\bar{r}_{A}=3 \hat{a}_{x}-\hat{a}_{y}+4 \hat{a}_{z}
$$

while the end point is denote with position vector:

$$
\bar{r}_{B}=-3 \hat{a}_{X}-2 \hat{a}_{z}
$$

Note that ordinarily, this would be an impossible problem for us to do!

But, we note that vector field $A(\bar{r})$ is conservative, therefore:

$$
\begin{aligned}
\int_{C} A(\bar{r}) \cdot \overline{d \ell} & =\int_{C} \nabla g(\bar{r}) \cdot \overline{d \ell} \\
& =g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right)
\end{aligned}
$$

For this problem, it is evident that:

$$
g(\bar{r})=\left(x^{2}+y^{2}\right) z
$$

Therefore, $g\left(\bar{r}=\bar{r}_{A}\right)$ is the scalar field evaluated at $x=3, y=-$ 1, $z=4$; while $g\left(\bar{r}=\bar{r}_{B}\right)$ is the scalar field evaluated at at $x=-$ $3, y=0, z=-2$.

$$
\begin{gathered}
g\left(\bar{r}=\bar{r}_{A}\right)=\left((3)^{2}+(-1)^{2}\right) 4=40 \\
g\left(\bar{r}=\bar{r}_{B}\right)=\left((-3)^{2}+(0)^{2}\right)(-2)=-18
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
\int_{C} A(\bar{r}) \cdot \overline{d \ell} & =\int_{C} \nabla g(\bar{r}) \cdot \overline{d \ell} \\
& =g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right) \\
& =-18-40 \\
& =-58
\end{aligned}
$$

