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Example: The Electrostatic 
Fields of a Coaxial Line 

 
A common form of a transmission line is the coaxial cable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The coax has an outer diameter b, and an inner diameter a.  
The space between the conductors is filled with dielectric 
material of permittivity ε . 
 
Say a voltage V0 is placed across the conductors, such that the 
electric potential of the outer conductor is zero, and the 
electric potential of the inner conductor is V0.  
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The potential difference between the inner and outer 
conductor is therefore V0 – 0 = V0 volts. 
 
Q: What electric potential field ( )rV , electric field ( )rE  
and charge density ( )rsρ  is produced by this situation? 
 
A:  We must solve a boundary-value problem!  We must 
find solutions that: 
 

a) Satisfy the differential equations of electrostatics 
(e.g., Poisson’s, Gauss’s).  
 
b)  Satisfy the electrostatic boundary conditions. 
 

Yikes! Where do we start ? 
 
We might start with the electric potential field ( )rV , since 
it is a scalar field. 
 

a)  The electric potential function must satisfy 
Poisson’s equation: 

 

( ) ( )2 rr vV ρ−
∇ =

ε
 

 
 b)  It must also satisfy the boundary conditions: 
 

( ) ( )0               0 V a V V bρ ρ= = = =  
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Consider first the dielectric region (a bρ< < ).  Since the 
region is a dielectric, there is no free charge, and: 
 

( )r 0vρ =  
 

Therefore, Poisson’s equation reduces to Laplace’s equation: 
 

( )2 r 0V∇ =  
 

This particular problem (i.e., coaxial line) is directly solvable 
because the structure is cylindrically symmetric.  Rotating 
the coax around the z-axis (i.e., in the âφ  direction) does 
not change the geometry at all. As a result, we know that 
the electric potential field is a function of ρ  only ! I.E.,: 
 

( ) ( )rV V ρ=  
 

This make the problem much easier.  Laplace’s equation 
becomes: 
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Be very careful during this 
step!  Make sure you 
implement the gul durn 
Laplacian operator correctly. 



11/8/2004 Example The Electorostatic Fields of a Coaxial Line 4/10 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Integrating both sides of the resulting equation, we find: 
  

( )

( )
1

0V d d

V C

ρ
ρ ρ ρ

ρ ρ
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ρ
ρ
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∂

∫ ∫
 

 
where C1 is some constant.  
 
Rearranging the above equation, we find: 
 

( ) 1V Cρ
ρ ρ

∂
=

∂
 

 
Integrating both sides again, we get: 
 

( )

( ) [ ]

1

1 2ln

V Cd d
p

V C C

ρ
ρ ρ

ρ

ρ ρ

∂
=

∂

= +

∫ ∫  

 
We find that this final equation ( ( ) [ ]1 2lnV C Cρ ρ= + ) will 
satisfy Laplace’s equation  (try it!).   
 
We must now apply the boundary conditions to determine 
the value of constants C1 and C2.   
 

*   We know that on the outer surface of the inner 
conductor (i.e., aρ = ), the electric potential is equal to 
V0 (i.e., ( ) 0V a Vρ = = ).   
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*  And, we know that on the inner surface of the outer 
conductor (i.e., bρ = ) the electric potential is equal to 
zero (i.e., ( ) 0V bρ = = ). 
 

Therefore, we can write: 
 

( ) [ ]

( ) [ ]

1 2 0

1 2

ln

ln 0

V a C a C V

V b C b C

ρ

ρ

= = + =

= = + =

 

 
Two equations and two unknowns (C1 and C2)! 
 
Solving for C1 and C2 we get: 
 

[ ] [ ]

[ ]
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and therefore, the electric potential field within the 
dielectric is found to be: 
 
 

( ) [ ] [ ] ( )00  ln b lnr     
ln b/a ln b/a

VVV b aρ
ρ

−
= + > >

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  
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Before we move on, we should do a sanity check to make 
sure we have done everything correctly.  Evaluating our 
result at aρ = , we get: 
 

( ) [ ] [ ]

[ ] [ ]( )

( )
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Likewise, we evaluate our result at bρ = : 
 

( ) [ ] [ ]

[ ] [ ]( )

0 0
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Our result is correct! 
 
Now, we can determine the electric field within the 
dielectric by taking the gradient of the electric potential 
field: 

 

( ) ( ) ( )0  1r r   
ln b/a

VV a b aρ ρ
ρ

= −∇ = > >
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E ˆ  
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Note that electric flux density is therefore: 
 
 

( ) ( ) ( )0  1r r     
ln b/a

ˆ
V a b aρ ρ

ρ
= = > >

⎡ ⎤⎣ ⎦
D E ε

ε  

 
 
Finally, we need to determine the charge density that 
actually created these fields! 
 
 

Q1: Just where is this charge? After all, the 
dielectric (if it is perfect) will contain no free charge. 
 
A1:  The free charge, as we might expect, is in the 
conductors.  Specifically, the charge is located at the 
surface of the conductor. 
 
Q2:  Just how do we determine this surface 
charge ( )rsρ ? 
 
A2:  Apply the boundary conditions! 
 
 
 

Recall that we found that at a conductor/dielectric interface, 
the surface charge density on the conductor is related to the 
electric flux density in the dielectric as: 
 

( ) ( )r rˆn n sD a ρ= ⋅ =D  
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First, we find that the electric flux density on the surface of 
the inner conductor (i.e., at aρ = ) is: 
 

( ) 0
a

0

 1r
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 1
ln b/a
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a
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ρ
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For every point on outer surface of the inner conductor, we 
find that the unit vector normal to the conductor is: 
 

n aa ρ=ˆ ˆ  
 
  
 
Therefore, we find that the surface charge density on the 
outer surface of the inner conductor is: 
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Likewise, we find the unit vector normal to the inner surface of 
the outer conductor is (do you see why?): 
 

n aa ρ= −ˆ ˆ  
 
 

Therefore, evaluating the electric flux density on the inner 
surface of the outer conductor (i.e., bρ = ), we find: 
 
 

( ) ( )
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Note the charge on the outer conductor is negative, while that 
of the inner conductor is positive.  Hence, the electric field 
points from the inner conductor to the outer. 
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We should note several things about these solutions: 
 

1)  ( )x r 0∇ =E  
 
2)  ( ) ( )2r 0  and  r 0V∇ ⋅ = ∇ =D  
 
3)  ( ) ( )r  and rD E  are normal to the surface of the 
conductor (i.e., their tangential components are equal to 
zero). 
 
4)  The electric field is precisely the same as that given by 
eq. 4.31 in section 4-5! 
 

( ) ( )0  1r   
ln b/a

ˆ ˆsa Va a a b aρ ρ
ρ ρ
ρ ρ

= = > >
⎡ ⎤⎣ ⎦

E
ε  

 
In other words, the fields ( ) ( ) ( )r , r , and rVE D  are 
attributable to free charge densities ( ) ( )r  and rsa sbρ ρ . 
 
 
 


