Example: The Surface Integral

Consider the vector field:

$$
\boldsymbol{A}(\bar{r})=x \hat{a}_{x}
$$

Say we wish to evaluate the surface integral:

$$
\iint_{s} \mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s}
$$

where S is a cylinder whose axis is aligned with the z-axis and is centered at the origin. This cylinder has a radius of 1 unit, and extends 1 unit below the $x-y$ plane and one unit above the $x-y$ plane. In other words, the cylinder has a height of 2 units.

This is a complex, closed surface. We will define the top of the cylinder as surface S_{1}, the side as S_{2}, and the bottom as S_{3}. The surface integral will therefore be evaluated as:

$$
\iint_{s} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s}=\iint_{s_{1}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{1}}+\iint_{s_{2}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}}+\iint_{s_{3}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{3}}
$$

Step 1: Determine $\overline{d s}$ for the surface S.
Let's define $\overline{d s}$ as pointing in the direction outward from the closed surface.
S_{1} is a flat plane parallel to the $x-y$ plane, defined as:

$$
0 \leq \rho \leq 1 \quad 0 \leq \phi \leq 2 \pi \quad z=1
$$

and whose outward pointing $\overline{d s}$ is:

$$
\overline{d s_{1}}=\overline{d s_{z}}=\hat{a}_{z} p d p d \phi
$$

S_{2} is a circular cylinder centered on the z-axis, defined as:

$$
\rho=1 \quad 0 \leq \phi \leq 2 \pi \quad-1 \leq z \leq 1
$$

and whose outward pointing $\overline{d s}$ is:

$$
\overline{d s_{2}}=\overline{d s_{\rho}}=\hat{a}_{\rho} p d z d \phi
$$

S_{3} is a flat plane parallel to the $x-y$ plane, defined as:

$$
0 \leq \rho \leq 1 \quad 0 \leq \phi \leq 2 \pi \quad z=-1
$$

and whose outward pointing $\overline{d s}$ is:

$$
\overline{d s_{3}}=-\overline{d s_{z}}=-\hat{a}_{z} p d p d \phi
$$

Step 2: Evaluate the dot product $\mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s}$.

$$
\begin{aligned}
\mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s_{1}} & =x \hat{a}_{x} \cdot \hat{a}_{z} \rho d \rho d \phi \\
& =x(0) \rho d \rho d \phi \\
& =0 \\
\mathbf{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}} & =x \hat{a}_{x} \cdot \hat{a}_{p} \rho d z d \phi \\
& =x(\cos \phi) \rho d z d \phi \\
\mathbf{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{3}} & =-x \hat{a}_{x} \cdot \hat{a}_{z} \rho d \rho d \phi \\
& =-x(0) \rho d \rho d \phi \\
& =0
\end{aligned}
$$

Look! Vector field $A(\bar{r})$ is tangential to surface S_{1} and S_{3} for all points on surface S_{1} and S_{3} ! Therefore:

$$
\begin{aligned}
\iint_{s} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s} & =\iint_{S_{1}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{1}}+\iint_{S_{2}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}}+\iint_{S_{3}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{3}} \\
& =0+\iint_{s_{2}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}}+0 \\
& =\iint_{S_{2}} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}}
\end{aligned}
$$

Step 3: Write the resulting scalar field using the same coordinate system as $\overline{d s}$.

The differential vector $\overline{d s_{\rho}}$ is expressed in cylindrical coordinates, therefore we must write the scalar integrand using cylindrical coordinates.

We know that:

$$
x=\rho \cos \phi
$$

Therefore:

$$
\begin{aligned}
A\left(\bar{r}_{s}\right) \cdot \overline{d s_{2}} & =x(\cos \phi) \rho d z d \phi \\
& =\rho \cos \phi(\cos \phi) \rho d z d \phi \\
& =\rho^{2} \cos ^{2} \phi d z d \phi
\end{aligned}
$$

Step 4: Evaluate the scalar field using the coordinate equality that described surface S.

Every point on S_{2} has the coordinate value $\rho=1$. Therefore:

$$
\begin{aligned}
\mathbf{A}\left(\overline{r_{s}}\right) \cdot \overline{d s_{2}} & =\rho^{2} \cos ^{2} \phi d z d \phi \\
& =1^{2} \cos ^{2} \phi d z d \phi \\
& =\cos ^{2} \phi d z d \phi
\end{aligned}
$$

Step 5: Determine the limits of integration from the inequalities that describe surface S.

For S_{2} we know that $0 \leq \phi \leq 2 \pi \quad-1 \leq z \leq 1$.

Therefore:

$$
\iint_{s} \mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s}=\iint_{s_{2}} \mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s_{2}}=\int_{0}^{2 \pi} \int_{-1}^{1} \cos ^{2} \phi d z d \phi
$$

Step 6: Integrate the remaining function of two coordinate variables.

Using all the results determined above, the surface integral becomes:

$$
\begin{aligned}
\iint_{s} \boldsymbol{A}\left(\overline{r_{s}}\right) \cdot \overline{d s} & =\int_{0}^{2 \pi} \int_{-1}^{1} \cos ^{2} \phi d z d \phi \\
& =\int_{0}^{2 \pi} \cos ^{2} \phi d \phi \int_{-1}^{1} d z \\
& =(\pi-0)(1-(-1)) \\
& =2 \pi
\end{aligned}
$$

