Example: Vector Algebra

Consider the scalar expression:

$$
a c+b c+b d+a d
$$

We can manipulate and simply this expression using the rules of scalar algebra:

$$
\begin{aligned}
a c+b c+b d+a d & =a c+a d+b c+b d & & \text { (commutative) } \\
& =(a c+a d)+(b c+b d) & & \text { (associative) } \\
& =a(c+d)+b(c+d) & & \text { (distributive) } \\
& =(a+b)(c+d) & & \text { (distributive) }
\end{aligned}
$$

We can likewise perform a similar analysis on vector expressions! Consider now the expression:

$$
(A+B) \cdot C \times A
$$

We can show that this is actually a very familiar and basic vector operation!

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B}) \cdot \boldsymbol{C} \times \boldsymbol{A} & =\boldsymbol{C} \cdot \boldsymbol{A} \times(\mathbf{A}+\mathbf{B}) & & \text { (Triple product identity) } \\
& =\boldsymbol{C} \cdot(\mathbf{A} \times \mathbf{A}+\mathbf{A} \times \mathbf{B}) & & \text { (Cross Product Distibutive) } \\
& =\boldsymbol{C} \cdot \mathbf{A} \times \mathbf{B} & & \text { (Since } \boldsymbol{A} \times \boldsymbol{A}=0 \text {) } \\
& =\boldsymbol{A} \cdot \mathbf{B} \times \boldsymbol{C} & & \text { (Triple product identity) }
\end{aligned}
$$

Or, for example, if we consider:

$$
(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{B}+2 \mathbf{A})
$$

we find:
$=(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{B}+2 \mathbf{A})$
$=\boldsymbol{A} \cdot(\mathbf{B}+2 \mathbf{A})+\mathbf{B} \cdot(\mathbf{B}+2 \mathbf{A}) \quad$ (dot product distributive)
$=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot 2 \mathbf{A}+\mathbf{B} \cdot \mathbf{B}+\mathbf{B} \cdot 2 \mathbf{A}$ (dot product distributive)
$=\mathbf{A} \cdot \mathbf{B}+2 \mathbf{A} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}+2 \mathbf{B} \cdot \mathbf{A}$ (scalar multiply commutative)
$=A \cdot B+2|A|^{2}+|B|^{2}+2 B \cdot A \quad\left(C \cdot C=|C|^{2}\right.$ identity)
$=A \cdot B+2|A|^{2}+|B|^{2}+2 \boldsymbol{A} \cdot \mathbf{B} \quad$ (dot product communitive)
$=2|\mathbf{A}|^{2}+2 \mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{B}+|\mathbf{B}|^{2} \quad$ (vector addition commutative)
$=2|A|^{2}+(2+1) A \cdot B+|B|^{2} \quad$ (scalar multiply distributive)
$=|\mathbf{A}|^{2}+3 \mathbf{A} \cdot \mathbf{B}+|\mathbf{B}|^{2}$

Keep in mind one very important point when doing vector algebrathe expression can never change type (e.g., from vector to scalar)!

In other words, if the expression initially results in a vector (or scalar), then after each manipulation, the result must also be a vector (or scalar).

For example, we find that the following expression cannot possibly be true!

$$
A \times B+(B \cdot C) A=B \cdot(A \times C)+(A+B) \cdot C
$$

Q: Do you see why?

A:

Likewise, be careful not to create expressions that have no mathematical meaning whatsoever!

Examples include:

$$
\begin{aligned}
& (\mathbf{A} \cdot \mathbf{B}) \times \mathbf{C} \\
& \mathbf{A}+(\mathbf{B} \cdot \mathbf{C})
\end{aligned}
$$

