Line Integrals with

Complex Contours

Consider a more complex contour, such as:

Q: What's this flim-flam?! This contour can neither be expressed in terms of single coordinate inequality, nor with single differential line vector!

A: True! But we can still easily evaluate a line integral over this contour C. The trick is to divide C into two contours, denoted as C_{1} and C_{2} :

We can denote contour C as $C=C_{1}+C_{2}$. It can be shown that:

$$
\int_{c} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}=\int_{c_{1}} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}+\int_{c_{2}} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}
$$

Note for the example given, we can evaluate the integral over both contour C_{1} and contour C_{2}. The first is a circular arc around the z-axis, and the second is a line segment parallel to the y-axis.

Q: Does the direction of the contour matter?
A: YES! Every contour has a starting point and an end point. Integrating along the contour in the opposite direction will result in an incorrect answer!

For example, consider the two contours below:

In this case, the two contours are identical, with the exception of direction. In other words the beginning point of one is the end point of the other, and vice versa.

For this example, we would relate the two contours by saying:

$$
C_{1}=-C_{2} \text { and/or } C_{2}=-C_{1}
$$

Just like vectors, the negative of a contour is an otherwise identical contour with opposite direction. We find that:

$$
\int_{-c} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}=-\int_{c} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \bar{d}
$$

Q: Does the shape of the contour really matter, or does the result of line integration only depend on the starting and end points??

A: Generally speaking, the shape of the contour does matter. Not only does the line integral depend on where we start and where we finish, it also depends on the path we take to get there!

For example, consider these two contours:

Generally speaking, we find that:

$$
\int_{c_{1}} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell} \neq \int_{c_{2}} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}
$$

An exception to this is a special category of vector fields called conservative fields. For conservative fields, the contour path does not matter-the beginning and end points of the contour are all that are required to evaluate a line integral!

Remember the name conservative vector fields, as we will learn all about them later on. You will find that a conservative vector field has many properties that make it-well-EXCELLENT!

