Multiplicative Operations of Vectors and Scalars

Consider a scalar quantity a and a vector quantity B. We express the multiplication of these two values as:

$$
a B=C
$$

In other words, the product of a scalar and a vector-is a vector!

Q: OK, but what is vector C? What is the meaning of $a B$?

A: The resulting vector C has a magnitude that is equal to a times the magnitude of B . In other words:

$$
|\mathbf{C}|=a|\mathbf{B}|
$$

However, the direction of vector C is exactly that of B.

Therefore multiplying a vector by a scalar changes the magnitude of the vector, but not its direction.

For example:

Note that $B+B=2.0 B$!

1. More generally, we find that scalar-vector multiplication is distributive as:

E.G.,

2. And also distributive as:

3. Scalar-Vector multiplication is also commutative:

$$
a \mathrm{~B}=\mathrm{B} a
$$

4. Multiplication of a vector by a negative scalar is interpreted as:

$$
-a B=a(-B)
$$

E.G.. $\xrightarrow[B]{ }$

5. Division of a vector by a scalar is the same as multiplying the vector by the inverse of the scalar:

$$
\frac{\mathrm{B}}{a}=\left(\frac{1}{a}\right) \mathrm{B}
$$

Scalar-Vector multiplication is likewise used in many physical applications. For example, say you start in Lawrence and head west at 70 mph for exactly 3.3 hours.

Note your velocity has both direction (west) and magnitude (70 mph) - it's a vector! Lets denote it as $V=70 \mathrm{mph}$ west.

Likewise, your travel time is a scalar; lets denote it as $t=3.3 \mathrm{~h}$.

Now, lets multiply the two together (i.e., $t \mathrm{~V}$). The magnitude of the resulting vector is $70(3.3)=231$ miles. The direction of the resulting vector is of course unchanged: west.

A vector describing a distance and a direction-a directed distance! We find that $\tau \mathbf{V}=\overline{\mathbf{R}}$, where $\overline{\mathbf{R}}$ identifies your location after 3.3 hours!

