Solutions to Ampere's Law

Say we know the current distribution J(r) occurring in some

physical problem, and we wish to find the resulting magnetic
flux density B(r).

Q: How do we findB(r) given J (r)?
A:  Two ways! We either directly solve the differential
equation:

VxB(r) = u,J (1)
Or we first solve this differential equation for vector field
A(r):

VA(F) = 1,3 (F)

and then find B(r) by taking the curl of A(r) (i.e.,
VXA(r)=B(r)).

It turns out that the second option is often the easiest!

To see why, consider the vector Laplacian operator if vector
field A(r) is expressed using Cartesian base vectors:

VEA(r)=V°A (r)a, +V?A (r)a, + V°A () g,



We therefore write Ampere's Law in terms of three separate
scalar differential equations:

Vi, (F) =~ (F)
VZAy (F) = _IUOJy (F)
VA, (F) =~ (F)

Each of these differential equations is easily solved. In fact,
we already know their solution!

Recall we had the exact same differential equation in
electrostatcs (i.e., Poisson's equation):
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We know the solution V (r) to this differential equation is:
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Mathematically, Poisson's equation is exactly the same as each
of the three scalar differential equations at the top of the
page, with these substitutions:
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The solutions to the magnetic differential equation are
therefore:
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and since:
Ar)=A(r)a,+A(r)a +A(r)a,
and:

we can combine these three solutions and get the vector
solution to our vector differential equation:

Therefore, given current distribution J(r), we use the above
equation to determine magnetic vector potential A(r). We

then take the curl of this result to determine magnetic flux
density B(r).



For surface current, the resulting magnetic vector potential is:
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and for a current I flowing along contour C, we find:
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Again, ponder the analogy between these equations involving
sources and potentials and the equivalent equation from
electrostatics:
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